521 lines
12 KiB
Markdown
521 lines
12 KiB
Markdown
# bigint-crypto-utils - v3.0.20
|
|
|
|
## Table of contents
|
|
|
|
### Functions
|
|
|
|
- [abs](API.md#abs)
|
|
- [bitLength](API.md#bitlength)
|
|
- [eGcd](API.md#egcd)
|
|
- [gcd](API.md#gcd)
|
|
- [isProbablyPrime](API.md#isprobablyprime)
|
|
- [lcm](API.md#lcm)
|
|
- [max](API.md#max)
|
|
- [min](API.md#min)
|
|
- [modInv](API.md#modinv)
|
|
- [modPow](API.md#modpow)
|
|
- [prime](API.md#prime)
|
|
- [primeSync](API.md#primesync)
|
|
- [randBetween](API.md#randbetween)
|
|
- [randBits](API.md#randbits)
|
|
- [randBitsSync](API.md#randbitssync)
|
|
- [randBytes](API.md#randbytes)
|
|
- [randBytesSync](API.md#randbytessync)
|
|
- [toZn](API.md#tozn)
|
|
|
|
## Functions
|
|
|
|
### abs
|
|
|
|
▸ **abs**(`a`): `number` \| `bigint`
|
|
|
|
Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`number` \| `bigint`
|
|
|
|
The absolute value of a
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/abs.d.ts:8
|
|
|
|
___
|
|
|
|
### bitLength
|
|
|
|
▸ **bitLength**(`a`): `number`
|
|
|
|
Returns the bitlength of a number
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`number`
|
|
|
|
The bit length
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/bitLength.d.ts:7
|
|
|
|
___
|
|
|
|
### eGcd
|
|
|
|
▸ **eGcd**(`a`, `b`): `Egcd`
|
|
|
|
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
|
|
**`throws`** {RangeError}
|
|
This excepction is thrown if a or b are less than 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
| `b` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`Egcd`
|
|
|
|
A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/egcd.d.ts:18
|
|
|
|
___
|
|
|
|
### gcd
|
|
|
|
▸ **gcd**(`a`, `b`): `bigint`
|
|
|
|
Greatest-common divisor of two integers based on the iterative binary algorithm.
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
| `b` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
The greatest common divisor of a and b
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/gcd.d.ts:9
|
|
|
|
___
|
|
|
|
### isProbablyPrime
|
|
|
|
▸ **isProbablyPrime**(`w`, `iterations?`, `disableWorkers?`): `Promise`<`boolean`\>
|
|
|
|
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
|
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
|
|
|
|
**`throws`** {RangeError}
|
|
w MUST be >= 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `w` | `number` \| `bigint` | `undefined` | A positive integer to be tested for primality |
|
|
| `iterations` | `number` | `16` | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
|
|
| `disableWorkers` | `boolean` | `false` | Disable the use of workers for the primality test |
|
|
|
|
#### Returns
|
|
|
|
`Promise`<`boolean`\>
|
|
|
|
A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/isProbablyPrime.ts:21](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/isProbablyPrime.ts#L21)
|
|
|
|
___
|
|
|
|
### lcm
|
|
|
|
▸ **lcm**(`a`, `b`): `bigint`
|
|
|
|
The least common multiple computed as abs(a*b)/gcd(a,b)
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
| `b` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
The least common multiple of a and b
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/lcm.d.ts:8
|
|
|
|
___
|
|
|
|
### max
|
|
|
|
▸ **max**(`a`, `b`): `number` \| `bigint`
|
|
|
|
Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
| `b` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`number` \| `bigint`
|
|
|
|
Maximum of numbers a and b
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/max.d.ts:9
|
|
|
|
___
|
|
|
|
### min
|
|
|
|
▸ **min**(`a`, `b`): `number` \| `bigint`
|
|
|
|
Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type |
|
|
| :------ | :------ |
|
|
| `a` | `number` \| `bigint` |
|
|
| `b` | `number` \| `bigint` |
|
|
|
|
#### Returns
|
|
|
|
`number` \| `bigint`
|
|
|
|
Minimum of numbers a and b
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/min.d.ts:9
|
|
|
|
___
|
|
|
|
### modInv
|
|
|
|
▸ **modInv**(`a`, `n`): `bigint`
|
|
|
|
Modular inverse.
|
|
|
|
**`throws`** {RangeError}
|
|
Excpeption thorwn when a does not have inverse modulo n
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Description |
|
|
| :------ | :------ | :------ |
|
|
| `a` | `number` \| `bigint` | The number to find an inverse for |
|
|
| `n` | `number` \| `bigint` | The modulo |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
The inverse modulo n
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/modInv.d.ts:12
|
|
|
|
___
|
|
|
|
### modPow
|
|
|
|
▸ **modPow**(`b`, `e`, `n`): `bigint`
|
|
|
|
Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
|
|
|
**`throws`** {RangeError}
|
|
Excpeption thrown when n is not > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Description |
|
|
| :------ | :------ | :------ |
|
|
| `b` | `number` \| `bigint` | base |
|
|
| `e` | `number` \| `bigint` | exponent |
|
|
| `n` | `number` \| `bigint` | modulo |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
b**e mod n
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/modPow.d.ts:13
|
|
|
|
___
|
|
|
|
### prime
|
|
|
|
▸ **prime**(`bitLength`, `iterations?`): `Promise`<`bigint`\>
|
|
|
|
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
|
main process, and it can be much faster (if several cores or cpu are available).
|
|
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
|
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
|
|
|
|
**`throws`** {RangeError}
|
|
bitLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `bitLength` | `number` | `undefined` | The required bit length for the generated prime |
|
|
| `iterations` | `number` | `16` | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
|
|
|
|
#### Returns
|
|
|
|
`Promise`<`bigint`\>
|
|
|
|
A promise that resolves to a bigint probable prime of bitLength bits.
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/prime.ts:21](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/prime.ts#L21)
|
|
|
|
___
|
|
|
|
### primeSync
|
|
|
|
▸ **primeSync**(`bitLength`, `iterations?`): `bigint`
|
|
|
|
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|
The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
|
|
|
|
**`throws`** {RangeError}
|
|
bitLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `bitLength` | `number` | `undefined` | The required bit length for the generated prime |
|
|
| `iterations` | `number` | `16` | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
A bigint probable prime of bitLength bits.
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/prime.ts:100](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/prime.ts#L100)
|
|
|
|
___
|
|
|
|
### randBetween
|
|
|
|
▸ **randBetween**(`max`, `min?`): `bigint`
|
|
|
|
Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0
|
|
|
|
**`throws`** {RangeError}
|
|
Arguments MUST be: max > 0 && min >=0 && max > min
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Description |
|
|
| :------ | :------ | :------ |
|
|
| `max` | `bigint` | Returned value will be <= max |
|
|
| `min` | `bigint` | Returned value will be >= min |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
A cryptographically secure random bigint between [min,max]
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/randBetween.ts:15](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/randBetween.ts#L15)
|
|
|
|
___
|
|
|
|
### randBits
|
|
|
|
▸ **randBits**(`bitLength`, `forceLength?`): `Promise`<`Uint8Array` \| `Buffer`\>
|
|
|
|
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**`throws`** {RangeError}
|
|
bitLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `bitLength` | `number` | `undefined` | The desired number of random bits |
|
|
| `forceLength` | `boolean` | `false` | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
|
|
|
|
#### Returns
|
|
|
|
`Promise`<`Uint8Array` \| `Buffer`\>
|
|
|
|
A Promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/randBits.ts:14](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/randBits.ts#L14)
|
|
|
|
___
|
|
|
|
### randBitsSync
|
|
|
|
▸ **randBitsSync**(`bitLength`, `forceLength?`): `Uint8Array` \| `Buffer`
|
|
|
|
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**`throws`** {RangeError}
|
|
bitLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `bitLength` | `number` | `undefined` | The desired number of random bits |
|
|
| `forceLength` | `boolean` | `false` | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
|
|
|
|
#### Returns
|
|
|
|
`Uint8Array` \| `Buffer`
|
|
|
|
A Uint8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/randBits.ts:45](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/randBits.ts#L45)
|
|
|
|
___
|
|
|
|
### randBytes
|
|
|
|
▸ **randBytes**(`byteLength`, `forceLength?`): `Promise`<`Uint8Array` \| `Buffer`\>
|
|
|
|
Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()
|
|
|
|
**`throws`** {RangeError}
|
|
byteLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `byteLength` | `number` | `undefined` | The desired number of random bytes |
|
|
| `forceLength` | `boolean` | `false` | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
|
|
|
|
#### Returns
|
|
|
|
`Promise`<`Uint8Array` \| `Buffer`\>
|
|
|
|
A promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/randBytes.ts:12](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/randBytes.ts#L12)
|
|
|
|
___
|
|
|
|
### randBytesSync
|
|
|
|
▸ **randBytesSync**(`byteLength`, `forceLength?`): `Uint8Array` \| `Buffer`
|
|
|
|
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|
|
|
**`throws`** {RangeError}
|
|
byteLength MUST be > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Default value | Description |
|
|
| :------ | :------ | :------ | :------ |
|
|
| `byteLength` | `number` | `undefined` | The desired number of random bytes |
|
|
| `forceLength` | `boolean` | `false` | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
|
|
|
|
#### Returns
|
|
|
|
`Uint8Array` \| `Buffer`
|
|
|
|
A UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
|
|
|
#### Defined in
|
|
|
|
[src/ts/randBytes.ts:46](https://github.com/juanelas/bigint-crypto-utils/blob/e0e6c88/src/ts/randBytes.ts#L46)
|
|
|
|
___
|
|
|
|
### toZn
|
|
|
|
▸ **toZn**(`a`, `n`): `bigint`
|
|
|
|
Finds the smallest positive element that is congruent to a in modulo n
|
|
|
|
**`remarks`**
|
|
a and b must be the same type, either number or bigint
|
|
|
|
**`throws`** {RangeError}
|
|
Excpeption thrown when n is not > 0
|
|
|
|
#### Parameters
|
|
|
|
| Name | Type | Description |
|
|
| :------ | :------ | :------ |
|
|
| `a` | `number` \| `bigint` | An integer |
|
|
| `n` | `number` \| `bigint` | The modulo |
|
|
|
|
#### Returns
|
|
|
|
`bigint`
|
|
|
|
A bigint with the smallest positive representation of a modulo n
|
|
|
|
#### Defined in
|
|
|
|
node_modules/bigint-mod-arith/types/toZn.d.ts:15
|