707 lines
17 KiB
JavaScript
707 lines
17 KiB
JavaScript
'use strict'
|
||
|
||
Object.defineProperty(exports, '__esModule', { value: true })
|
||
|
||
var bigintModArith = require('bigint-mod-arith')
|
||
|
||
/**
|
||
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
||
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
|
||
*
|
||
* @param {number | bigint} w An integer to be tested for primality
|
||
* @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
|
||
*
|
||
* @return {Promise<boolean>} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
|
||
*/
|
||
async function isProbablyPrime (w, iterations = 16) {
|
||
if (typeof w === 'number') {
|
||
w = BigInt(w)
|
||
}
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // Node.js
|
||
if (_useWorkers) {
|
||
const { Worker } = require('worker_threads')
|
||
return new Promise((resolve, reject) => {
|
||
const worker = new Worker(__filename)
|
||
|
||
worker.on('message', (data) => {
|
||
worker.terminate()
|
||
resolve(data.isPrime)
|
||
})
|
||
|
||
worker.on('error', reject)
|
||
|
||
worker.postMessage({
|
||
rnd: w,
|
||
iterations: iterations,
|
||
id: 0
|
||
|
||
})
|
||
})
|
||
} else {
|
||
return new Promise((resolve) => {
|
||
resolve(_isProbablyPrime(w, iterations))
|
||
})
|
||
}
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
}
|
||
|
||
/**
|
||
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
||
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
||
* main process, and it can be much faster (if several cores or cpu are available).
|
||
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
||
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
|
||
*
|
||
* @param {number} bitLength The required bit length for the generated prime
|
||
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
||
*
|
||
* @returns {Promise<bigint>} A promise that resolves to a bigint probable prime of bitLength bits.
|
||
*/
|
||
function prime (bitLength, iterations = 16) {
|
||
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
|
||
|
||
if (!_useWorkers) {
|
||
let rnd = 0n
|
||
do {
|
||
rnd = fromBuffer(randBits(bitLength, true))
|
||
} while (!_isProbablyPrime(rnd, iterations))
|
||
return new Promise((resolve) => { resolve(rnd) })
|
||
}
|
||
return new Promise((resolve) => {
|
||
const workerList = []
|
||
const _onmessage = (msg, newWorker) => {
|
||
if (msg.isPrime) {
|
||
// if a prime number has been found, stop all the workers, and return it
|
||
for (let j = 0; j < workerList.length; j++) {
|
||
workerList[j].terminate()
|
||
}
|
||
while (workerList.length) {
|
||
workerList.pop()
|
||
}
|
||
resolve(msg.value)
|
||
} else { // if a composite is found, make the worker test another random number
|
||
const buf = randBitsSync(bitLength, true)
|
||
const rnd = fromBuffer(buf)
|
||
try {
|
||
newWorker.postMessage({
|
||
rnd: rnd,
|
||
iterations: iterations,
|
||
id: msg.id
|
||
})
|
||
} catch (error) {
|
||
// The worker has already terminated. There is nothing to handle here
|
||
}
|
||
}
|
||
}
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // Node.js
|
||
const { cpus } = require('os')
|
||
const { Worker } = require('worker_threads')
|
||
for (let i = 0; i < cpus().length - 1; i++) {
|
||
const newWorker = new Worker(__filename)
|
||
newWorker.on('message', (msg) => _onmessage(msg, newWorker))
|
||
workerList.push(newWorker)
|
||
}
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
for (let i = 0; i < workerList.length; i++) {
|
||
const buf = randBitsSync(bitLength, true)
|
||
const rnd = fromBuffer(buf)
|
||
workerList[i].postMessage({
|
||
rnd: rnd,
|
||
iterations: iterations,
|
||
id: i
|
||
})
|
||
}
|
||
})
|
||
}
|
||
|
||
/**
|
||
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
||
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
|
||
*
|
||
* @param {number} bitLength The required bit length for the generated prime
|
||
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
||
*
|
||
* @returns {bigint} A bigint probable prime of bitLength bits.
|
||
*/
|
||
function primeSync (bitLength, iterations = 16) {
|
||
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
|
||
let rnd = 0n
|
||
do {
|
||
rnd = fromBuffer(randBits(bitLength, true))
|
||
} while (!_isProbablyPrime(rnd, iterations))
|
||
return rnd
|
||
}
|
||
|
||
/**
|
||
* Returns a cryptographically secure random integer between [min,max]
|
||
* @param {bigint} max Returned value will be <= max
|
||
* @param {bigint} [min = BigInt(1)] Returned value will be >= min
|
||
*
|
||
* @returns {bigint} A cryptographically secure random bigint between [min,max]
|
||
*/
|
||
function randBetween (max, min = 1n) {
|
||
if (max <= min) throw new Error('max must be > min')
|
||
const interval = max - min
|
||
const bitLen = bigintModArith.bitLength(interval)
|
||
let rnd
|
||
do {
|
||
const buf = randBitsSync(bitLen)
|
||
rnd = fromBuffer(buf)
|
||
} while (rnd > interval)
|
||
return rnd + min
|
||
}
|
||
|
||
/**
|
||
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param {number} bitLength The desired number of random bits
|
||
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
||
*
|
||
* @returns {Promise<Buffer | Uint8Array>} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
|
||
*/
|
||
async function randBits (bitLength, forceLength = false) {
|
||
if (bitLength < 1) {
|
||
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
|
||
}
|
||
|
||
const byteLength = Math.ceil(bitLength / 8)
|
||
const bitLengthMod8 = bitLength % 8
|
||
|
||
const rndBytes = await randBytes(byteLength, false)
|
||
if (bitLengthMod8) {
|
||
// Fill with 0's the extra bits
|
||
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
|
||
}
|
||
if (forceLength) {
|
||
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
|
||
rndBytes[0] = rndBytes[0] | mask
|
||
}
|
||
return rndBytes
|
||
}
|
||
|
||
/**
|
||
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param {number} bitLength The desired number of random bits
|
||
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
||
*
|
||
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
|
||
*/
|
||
function randBitsSync (bitLength, forceLength = false) {
|
||
if (bitLength < 1) {
|
||
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
|
||
}
|
||
|
||
const byteLength = Math.ceil(bitLength / 8)
|
||
const rndBytes = randBytesSync(byteLength, false)
|
||
const bitLengthMod8 = bitLength % 8
|
||
if (bitLengthMod8) {
|
||
// Fill with 0's the extra bits
|
||
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
|
||
}
|
||
if (forceLength) {
|
||
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
|
||
rndBytes[0] = rndBytes[0] | mask
|
||
}
|
||
return rndBytes
|
||
}
|
||
|
||
/**
|
||
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param {number} byteLength The desired number of random bytes
|
||
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
||
*
|
||
* @returns {Promise<Buffer | Uint8Array>} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
|
||
*/
|
||
function randBytes (byteLength, forceLength = false) {
|
||
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
|
||
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // node
|
||
const crypto = require('crypto')
|
||
const buf = Buffer.alloc(byteLength)
|
||
return crypto.randomFill(buf, function (resolve) {
|
||
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
||
if (forceLength) { buf[0] = buf[0] | 128 }
|
||
resolve(buf)
|
||
})
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
}
|
||
|
||
/**
|
||
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
||
*
|
||
* @param {number} byteLength The desired number of random bytes
|
||
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
||
*
|
||
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
|
||
*/
|
||
function randBytesSync (byteLength, forceLength = false) {
|
||
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
|
||
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // node
|
||
const crypto = require('crypto')
|
||
const buf = Buffer.alloc(byteLength)
|
||
crypto.randomFillSync(buf)
|
||
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
||
if (forceLength) { buf[0] = buf[0] | 128 }
|
||
return buf
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
}
|
||
|
||
/* HELPER FUNCTIONS */
|
||
|
||
function fromBuffer (buf) {
|
||
let ret = 0n
|
||
for (const i of buf.values()) {
|
||
const bi = BigInt(i)
|
||
ret = (ret << BigInt(8)) + bi
|
||
}
|
||
return ret
|
||
}
|
||
|
||
function _isProbablyPrime (w, iterations = 16) {
|
||
/*
|
||
PREFILTERING. Even values but 2 are not primes, so don't test.
|
||
1 is not a prime and the M-R algorithm needs w>1.
|
||
*/
|
||
if (w === 2n) { return true } else if ((w & 1n) === 0n || w === 1n) { return false }
|
||
|
||
/*
|
||
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
|
||
*/
|
||
const firstPrimes = [
|
||
3n,
|
||
5n,
|
||
7n,
|
||
11n,
|
||
13n,
|
||
17n,
|
||
19n,
|
||
23n,
|
||
29n,
|
||
31n,
|
||
37n,
|
||
41n,
|
||
43n,
|
||
47n,
|
||
53n,
|
||
59n,
|
||
61n,
|
||
67n,
|
||
71n,
|
||
73n,
|
||
79n,
|
||
83n,
|
||
89n,
|
||
97n,
|
||
101n,
|
||
103n,
|
||
107n,
|
||
109n,
|
||
113n,
|
||
127n,
|
||
131n,
|
||
137n,
|
||
139n,
|
||
149n,
|
||
151n,
|
||
157n,
|
||
163n,
|
||
167n,
|
||
173n,
|
||
179n,
|
||
181n,
|
||
191n,
|
||
193n,
|
||
197n,
|
||
199n,
|
||
211n,
|
||
223n,
|
||
227n,
|
||
229n,
|
||
233n,
|
||
239n,
|
||
241n,
|
||
251n,
|
||
257n,
|
||
263n,
|
||
269n,
|
||
271n,
|
||
277n,
|
||
281n,
|
||
283n,
|
||
293n,
|
||
307n,
|
||
311n,
|
||
313n,
|
||
317n,
|
||
331n,
|
||
337n,
|
||
347n,
|
||
349n,
|
||
353n,
|
||
359n,
|
||
367n,
|
||
373n,
|
||
379n,
|
||
383n,
|
||
389n,
|
||
397n,
|
||
401n,
|
||
409n,
|
||
419n,
|
||
421n,
|
||
431n,
|
||
433n,
|
||
439n,
|
||
443n,
|
||
449n,
|
||
457n,
|
||
461n,
|
||
463n,
|
||
467n,
|
||
479n,
|
||
487n,
|
||
491n,
|
||
499n,
|
||
503n,
|
||
509n,
|
||
521n,
|
||
523n,
|
||
541n,
|
||
547n,
|
||
557n,
|
||
563n,
|
||
569n,
|
||
571n,
|
||
577n,
|
||
587n,
|
||
593n,
|
||
599n,
|
||
601n,
|
||
607n,
|
||
613n,
|
||
617n,
|
||
619n,
|
||
631n,
|
||
641n,
|
||
643n,
|
||
647n,
|
||
653n,
|
||
659n,
|
||
661n,
|
||
673n,
|
||
677n,
|
||
683n,
|
||
691n,
|
||
701n,
|
||
709n,
|
||
719n,
|
||
727n,
|
||
733n,
|
||
739n,
|
||
743n,
|
||
751n,
|
||
757n,
|
||
761n,
|
||
769n,
|
||
773n,
|
||
787n,
|
||
797n,
|
||
809n,
|
||
811n,
|
||
821n,
|
||
823n,
|
||
827n,
|
||
829n,
|
||
839n,
|
||
853n,
|
||
857n,
|
||
859n,
|
||
863n,
|
||
877n,
|
||
881n,
|
||
883n,
|
||
887n,
|
||
907n,
|
||
911n,
|
||
919n,
|
||
929n,
|
||
937n,
|
||
941n,
|
||
947n,
|
||
953n,
|
||
967n,
|
||
971n,
|
||
977n,
|
||
983n,
|
||
991n,
|
||
997n,
|
||
1009n,
|
||
1013n,
|
||
1019n,
|
||
1021n,
|
||
1031n,
|
||
1033n,
|
||
1039n,
|
||
1049n,
|
||
1051n,
|
||
1061n,
|
||
1063n,
|
||
1069n,
|
||
1087n,
|
||
1091n,
|
||
1093n,
|
||
1097n,
|
||
1103n,
|
||
1109n,
|
||
1117n,
|
||
1123n,
|
||
1129n,
|
||
1151n,
|
||
1153n,
|
||
1163n,
|
||
1171n,
|
||
1181n,
|
||
1187n,
|
||
1193n,
|
||
1201n,
|
||
1213n,
|
||
1217n,
|
||
1223n,
|
||
1229n,
|
||
1231n,
|
||
1237n,
|
||
1249n,
|
||
1259n,
|
||
1277n,
|
||
1279n,
|
||
1283n,
|
||
1289n,
|
||
1291n,
|
||
1297n,
|
||
1301n,
|
||
1303n,
|
||
1307n,
|
||
1319n,
|
||
1321n,
|
||
1327n,
|
||
1361n,
|
||
1367n,
|
||
1373n,
|
||
1381n,
|
||
1399n,
|
||
1409n,
|
||
1423n,
|
||
1427n,
|
||
1429n,
|
||
1433n,
|
||
1439n,
|
||
1447n,
|
||
1451n,
|
||
1453n,
|
||
1459n,
|
||
1471n,
|
||
1481n,
|
||
1483n,
|
||
1487n,
|
||
1489n,
|
||
1493n,
|
||
1499n,
|
||
1511n,
|
||
1523n,
|
||
1531n,
|
||
1543n,
|
||
1549n,
|
||
1553n,
|
||
1559n,
|
||
1567n,
|
||
1571n,
|
||
1579n,
|
||
1583n,
|
||
1597n
|
||
]
|
||
|
||
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
|
||
const p = firstPrimes[i]
|
||
if (w === p) {
|
||
return true
|
||
} else if (w % p === 0n) {
|
||
return false
|
||
}
|
||
}
|
||
|
||
/*
|
||
1. Let a be the largest integer such that 2**a divides w−1.
|
||
2. m = (w−1) / 2**a.
|
||
3. wlen = len (w).
|
||
4. For i = 1 to iterations do
|
||
4.1 Obtain a string b of wlen bits from an RBG.
|
||
Comment: Ensure that 1 < b < w−1.
|
||
4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.
|
||
4.3 z = b**m mod w.
|
||
4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.
|
||
4.5 For j = 1 to a − 1 do.
|
||
4.5.1 z = z**2 mod w.
|
||
4.5.2 If (z = w−1), then go to step 4.7.
|
||
4.5.3 If (z = 1), then go to step 4.6.
|
||
4.6 Return COMPOSITE.
|
||
4.7 Continue.
|
||
Comment: Increment i for the do-loop in step 4.
|
||
5. Return PROBABLY PRIME.
|
||
*/
|
||
let a = 0n
|
||
const d = w - 1n
|
||
let aux = d
|
||
while (aux % 2n === 0n) {
|
||
aux /= 2n
|
||
++a
|
||
}
|
||
|
||
const m = d / (2n ** a)
|
||
|
||
// /* eslint-disable no-labels */
|
||
// loop: do {
|
||
// const b = randBetween(w - 1n, 2n)
|
||
// let z = modPow(b, m, w)
|
||
// if (z === 1n || z === w - 1n) { continue }
|
||
// for (let j = 1; j < a; j++) {
|
||
// z = modPow(z, 2n, w)
|
||
// if (z === w - 1n) { continue loop }
|
||
// if (z === 1n) { break }
|
||
// }
|
||
// return false
|
||
// } while (--iterations)
|
||
// /* eslint-enable no-labels */
|
||
|
||
// return true
|
||
|
||
do {
|
||
const b = randBetween(d, 2n)
|
||
let z = bigintModArith.modPow(b, m, w)
|
||
if (z === 1n || z === d) { continue }
|
||
let j = 1
|
||
while (j < a) {
|
||
z = bigintModArith.modPow(z, 2n, w)
|
||
if (z === d) { break }
|
||
if (z === 1n) { return false }
|
||
j++
|
||
}
|
||
if (z !== d) {
|
||
return false
|
||
}
|
||
} while (--iterations)
|
||
return true
|
||
}
|
||
|
||
let _useWorkers = true // The following is just to check whether Node.js can use workers
|
||
/* eslint-disable no-lone-blocks */
|
||
{ // Node.js
|
||
_useWorkers = (function _workers () {
|
||
try {
|
||
require.resolve('worker_threads')
|
||
return true
|
||
} catch (e) {
|
||
console.log(`[bigint-crypto-utils] WARNING:
|
||
This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers.
|
||
· With Node >=11 it is enabled by default (consider upgrading).
|
||
· With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `)
|
||
return false
|
||
}
|
||
})()
|
||
}
|
||
/* eslint-enable no-lone-blocks */
|
||
|
||
if (_useWorkers) { // node.js with support for workers
|
||
const { parentPort, isMainThread } = require('worker_threads')
|
||
if (!isMainThread) { // worker
|
||
parentPort.on('message', function (data) { // Let's start once we are called
|
||
// data = {rnd: <bigint>, iterations: <number>}
|
||
const isPrime = _isProbablyPrime(data.rnd, data.iterations)
|
||
parentPort.postMessage({
|
||
isPrime: isPrime,
|
||
value: data.rnd,
|
||
id: data.id
|
||
})
|
||
})
|
||
}
|
||
}
|
||
|
||
Object.defineProperty(exports, 'abs', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.abs
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'bitLength', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.bitLength
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'eGcd', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.eGcd
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'gcd', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.gcd
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'lcm', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.lcm
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'max', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.max
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'min', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.min
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'modInv', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.modInv
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'modPow', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.modPow
|
||
}
|
||
})
|
||
Object.defineProperty(exports, 'toZn', {
|
||
enumerable: true,
|
||
get: function () {
|
||
return bigintModArith.toZn
|
||
}
|
||
})
|
||
exports.isProbablyPrime = isProbablyPrime
|
||
exports.prime = prime
|
||
exports.primeSync = primeSync
|
||
exports.randBetween = randBetween
|
||
exports.randBits = randBits
|
||
exports.randBitsSync = randBitsSync
|
||
exports.randBytes = randBytes
|
||
exports.randBytesSync = randBytesSync
|