bigint-crypto-utils/lib/index.node.js

847 lines
20 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'use strict'
Object.defineProperty(exports, '__esModule', { value: true })
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
function abs (a) {
a = BigInt(a)
return (a >= 0n) ? a : -a
}
/**
* Returns the bitlength of a number
*
* @param {number|bigint} a
* @returns {number} - the bit length
*/
function bitLength (a) {
a = BigInt(a)
if (a === 1n) { return 1 }
let bits = 1
do {
bits++
} while ((a >>= 1n) > 1n)
return bits
}
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
function eGcd (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a <= 0n | b <= 0n) { return NaN } // a and b MUST be positive
let x = 0n
let y = 1n
let u = 1n
let v = 0n
while (a !== 0n) {
const q = b / a
const r = b % a
const m = x - (u * q)
const n = y - (v * q)
b = a
a = r
x = u
y = v
u = m
v = n
}
return {
b: b,
x: x,
y: y
}
}
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
function gcd (a, b) {
a = abs(a)
b = abs(b)
if (a === 0n) { return b } else if (b === 0n) { return a }
let shift = 0n
while (!((a | b) & 1n)) {
a >>= 1n
b >>= 1n
shift++
}
while (!(a & 1n)) a >>= 1n
do {
while (!(b & 1n)) b >>= 1n
if (a > b) {
const x = a
a = b
b = x
}
b -= a
} while (b)
// rescale
return a << shift
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
function lcm (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a === 0n && b === 0n) { return 0n }
return abs(a * b) / gcd(a, b)
}
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} maximum of numbers a and b
*/
function max (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? a : b
}
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} minimum of numbers a and b
*/
function min (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? b : a
}
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n or NaN if it does not exist
*/
function modInv (a, n) {
const egcd = eGcd(toZn(a, n), n)
if (egcd.b !== 1n) {
return NaN // modular inverse does not exist
} else {
return toZn(egcd.x, n)
}
}
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param {number|bigint} b base
* @param {number|bigint} e exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} b**e mod n
*/
function modPow (b, e, n) {
n = BigInt(n)
if (n === 0n) { return NaN } else if (n === 1n) { return 0n }
b = toZn(b, n)
e = BigInt(e)
if (e < 0n) {
return modInv(modPow(b, abs(e), n), n)
}
let r = 1n
while (e > 0) {
if ((e % 2n) === 1n) {
r = (r * b) % n
}
e = e / 2n
b = b ** 2n % n
}
return r
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
function toZn (a, n) {
n = BigInt(n)
if (n <= 0) { return NaN }
a = BigInt(a) % n
return (a < 0) ? a + n : a
}
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {number | bigint} w An integer to be tested for primality
* @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @returns {Promise<boolean>} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
function isProbablyPrime (w, iterations = 16) {
if (typeof w === 'number') {
w = BigInt(w)
}
/* eslint-disable no-lone-blocks */
{ // Node.js
if (_useWorkers) {
const { Worker } = require('worker_threads')
return new Promise((resolve, reject) => {
const worker = new Worker(__filename)
worker.on('message', (data) => {
worker.terminate()
resolve(data.isPrime)
})
worker.on('error', reject)
worker.postMessage({
rnd: w,
iterations: iterations,
id: 0
})
})
} else {
return new Promise((resolve) => {
resolve(_isProbablyPrime(w, iterations))
})
}
}
/* eslint-enable no-lone-blocks */
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise<bigint>} A promise that resolves to a bigint probable prime of bitLength bits.
*/
function prime (bitLength, iterations = 16) {
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
if (!_useWorkers) { // If there is no support for workers
let rnd = 0n
do {
rnd = fromBuffer(randBitsSync(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))
return new Promise((resolve) => { resolve(rnd) })
}
return new Promise((resolve) => {
const workerList = []
const _onmessage = (msg, newWorker) => {
if (msg.isPrime) {
// if a prime number has been found, stop all the workers, and return it
for (let j = 0; j < workerList.length; j++) {
workerList[j].terminate()
}
while (workerList.length) {
workerList.pop()
}
resolve(msg.value)
} else { // if a composite is found, make the worker test another random number
const buf = randBitsSync(bitLength, true)
const rnd = fromBuffer(buf)
try {
newWorker.postMessage({
rnd: rnd,
iterations: iterations,
id: msg.id
})
} catch (error) {
// The worker has already terminated. There is nothing to handle here
}
}
}
/* eslint-disable no-lone-blocks */
{ // Node.js
const { cpus } = require('os')
const { Worker } = require('worker_threads')
for (let i = 0; i < cpus().length - 1; i++) {
const newWorker = new Worker(__filename)
newWorker.on('message', (msg) => _onmessage(msg, newWorker))
workerList.push(newWorker)
}
}
/* eslint-enable no-lone-blocks */
for (let i = 0; i < workerList.length; i++) {
const buf = randBitsSync(bitLength, true)
const rnd = fromBuffer(buf)
workerList[i].postMessage({
rnd: rnd,
iterations: iterations,
id: i
})
}
})
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {bigint} A bigint probable prime of bitLength bits.
*/
function primeSync (bitLength, iterations = 16) {
if (bitLength < 1) throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
let rnd = 0n
do {
rnd = fromBuffer(randBitsSync(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))
return rnd
}
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} [min = BigInt(1)] Returned value will be >= min
*
* @returns {bigint} A cryptographically secure random bigint between [min,max]
*/
function randBetween (max, min = 1n) {
if (max <= min) throw new Error('max must be > min')
const interval = max - min
const bitLen = bitLength(interval)
let rnd
do {
const buf = randBitsSync(bitLen)
rnd = fromBuffer(buf)
} while (rnd > interval)
return rnd + min
}
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* Since version 3.0.0 this is an async function and a new randBitsSync function has been added. If you are migrating from version 2 call randBitsSync instead.
* @since 3.0.0
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
async function randBits (bitLength, forceLength = false) {
if (bitLength < 1) {
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
}
const byteLength = Math.ceil(bitLength / 8)
const bitLengthMod8 = bitLength % 8
const rndBytes = await randBytes(byteLength, false)
if (bitLengthMod8) {
// Fill with 0's the extra bits
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
}
if (forceLength) {
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
rndBytes[0] = rndBytes[0] | mask
}
return rndBytes
}
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
* @since 3.0.0
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
function randBitsSync (bitLength, forceLength = false) {
if (bitLength < 1) {
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
}
const byteLength = Math.ceil(bitLength / 8)
const rndBytes = randBytesSync(byteLength, false)
const bitLengthMod8 = bitLength % 8
if (bitLengthMod8) {
// Fill with 0's the extra bits
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
}
if (forceLength) {
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
rndBytes[0] = rndBytes[0] | mask
}
return rndBytes
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytes (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
/* eslint-disable no-lone-blocks */
{ // node
const crypto = require('crypto')
const buf = Buffer.alloc(byteLength)
return crypto.randomFill(buf, function (resolve) {
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) buf[0] = buf[0] | 128
resolve(buf)
})
}
/* eslint-enable no-lone-blocks */
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytesSync (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
/* eslint-disable no-lone-blocks */
{ // node
const crypto = require('crypto')
const buf = Buffer.alloc(byteLength)
crypto.randomFillSync(buf)
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) { buf[0] = buf[0] | 128 }
return buf
}
/* eslint-enable no-lone-blocks */
}
/* HELPER FUNCTIONS */
function fromBuffer (buf) {
let ret = 0n
for (const i of buf.values()) {
const bi = BigInt(i)
ret = (ret << BigInt(8)) + bi
}
return ret
}
function _isProbablyPrime (w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === 2n) return true
else if ((w & 1n) === 0n || w === 1n) return false
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3n,
5n,
7n,
11n,
13n,
17n,
19n,
23n,
29n,
31n,
37n,
41n,
43n,
47n,
53n,
59n,
61n,
67n,
71n,
73n,
79n,
83n,
89n,
97n,
101n,
103n,
107n,
109n,
113n,
127n,
131n,
137n,
139n,
149n,
151n,
157n,
163n,
167n,
173n,
179n,
181n,
191n,
193n,
197n,
199n,
211n,
223n,
227n,
229n,
233n,
239n,
241n,
251n,
257n,
263n,
269n,
271n,
277n,
281n,
283n,
293n,
307n,
311n,
313n,
317n,
331n,
337n,
347n,
349n,
353n,
359n,
367n,
373n,
379n,
383n,
389n,
397n,
401n,
409n,
419n,
421n,
431n,
433n,
439n,
443n,
449n,
457n,
461n,
463n,
467n,
479n,
487n,
491n,
499n,
503n,
509n,
521n,
523n,
541n,
547n,
557n,
563n,
569n,
571n,
577n,
587n,
593n,
599n,
601n,
607n,
613n,
617n,
619n,
631n,
641n,
643n,
647n,
653n,
659n,
661n,
673n,
677n,
683n,
691n,
701n,
709n,
719n,
727n,
733n,
739n,
743n,
751n,
757n,
761n,
769n,
773n,
787n,
797n,
809n,
811n,
821n,
823n,
827n,
829n,
839n,
853n,
857n,
859n,
863n,
877n,
881n,
883n,
887n,
907n,
911n,
919n,
929n,
937n,
941n,
947n,
953n,
967n,
971n,
977n,
983n,
991n,
997n,
1009n,
1013n,
1019n,
1021n,
1031n,
1033n,
1039n,
1049n,
1051n,
1061n,
1063n,
1069n,
1087n,
1091n,
1093n,
1097n,
1103n,
1109n,
1117n,
1123n,
1129n,
1151n,
1153n,
1163n,
1171n,
1181n,
1187n,
1193n,
1201n,
1213n,
1217n,
1223n,
1229n,
1231n,
1237n,
1249n,
1259n,
1277n,
1279n,
1283n,
1289n,
1291n,
1297n,
1301n,
1303n,
1307n,
1319n,
1321n,
1327n,
1361n,
1367n,
1373n,
1381n,
1399n,
1409n,
1423n,
1427n,
1429n,
1433n,
1439n,
1447n,
1451n,
1453n,
1459n,
1471n,
1481n,
1483n,
1487n,
1489n,
1493n,
1499n,
1511n,
1523n,
1531n,
1543n,
1549n,
1553n,
1559n,
1567n,
1571n,
1579n,
1583n,
1597n
]
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
const p = firstPrimes[i]
if (w === p) return true
else if (w % p === 0n) return false
}
/*
1. Let a be the largest integer such that 2**a divides w1.
2. m = (w1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w1.
4.2 If ((b ≤ 1) or (b ≥ w1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.
4.5 For j = 1 to a 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = 0n
const d = w - 1n
let aux = d
while (aux % 2n === 0n) {
aux /= 2n
++a
}
const m = d / (2n ** a)
do {
const b = randBetween(d, 2n)
let z = modPow(b, m, w)
if (z === 1n || z === d) continue
let j = 1
while (j < a) {
z = modPow(z, 2n, w)
if (z === d) break
if (z === 1n) return false
j++
}
if (z !== d) return false
} while (--iterations)
return true
}
let _useWorkers = false // The following is just to check whether we can use workers
/* eslint-disable no-lone-blocks */
{ // Node.js
try {
require.resolve('worker_threads')
_useWorkers = true
} catch (e) {
console.log(`[bigint-crypto-utils] WARNING:
This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers.
· With Node >=11 it is enabled by default (consider upgrading).
· With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `)
_useWorkers = true
}
}
/* eslint-enable no-lone-blocks */
if (_useWorkers) { // node.js with support for workers
const { parentPort, isMainThread } = require('worker_threads')
if (!isMainThread) { // worker
parentPort.on('message', function (data) { // Let's start once we are called
// data = {rnd: <bigint>, iterations: <number>}
const isPrime = _isProbablyPrime(data.rnd, data.iterations)
parentPort.postMessage({
isPrime: isPrime,
value: data.rnd,
id: data.id
})
})
}
}
exports.abs = abs
exports.bitLength = bitLength
exports.eGcd = eGcd
exports.gcd = gcd
exports.isProbablyPrime = isProbablyPrime
exports.lcm = lcm
exports.max = max
exports.min = min
exports.modInv = modInv
exports.modPow = modPow
exports.prime = prime
exports.primeSync = primeSync
exports.randBetween = randBetween
exports.randBits = randBits
exports.randBitsSync = randBitsSync
exports.randBytes = randBytes
exports.randBytesSync = randBytesSync
exports.toZn = toZn