Go to file
Juan Hernández Serrano 15cd113ac9 Fixed .gitignore 2019-04-19 12:13:45 +02:00
build Working! 2019-04-19 12:04:06 +02:00
dist Working! 2019-04-19 12:05:37 +02:00
src Working! 2019-04-19 12:04:06 +02:00
test Working! 2019-04-19 12:04:06 +02:00
.eslintrc.json working with worker file 2019-04-19 09:42:28 +02:00
.gitignore Fixed .gitignore 2019-04-19 12:13:45 +02:00
LICENSE working with worker file 2019-04-19 09:42:28 +02:00
README.hbs Working! 2019-04-19 12:04:06 +02:00
README.md Working! 2019-04-19 12:04:06 +02:00
package-lock.json working with worker file 2019-04-19 09:42:28 +02:00
package.json Working! 2019-04-19 12:04:06 +02:00

README.md

bigint-crypto-utils

Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a very fast strong probable prime generation/testing (parallelised multi-threaded Miller-Rabin primality test). It can be used with Node.js (>=10.4.0) and Web Browsers supporting BigInt.

The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography

Many platforms provide native support for cryptography, such as webcrypto or node crypto.

Installation

bigint-crypto-utils is distributed for web browsers supporting BigInt as an ES6 module or a IIFE file, and for Node.js (>=10.4.0) as a CJS module.

bigint-crypto-utils can be imported to your project with npm:

npm install bigint-crypto-utils

NPM installation defaults to the ES6 module for browsers and the CJS for Node.js.

For web browsers, you can also directly download the IIFE file or the ES6 module from GitHub.

Usage example

With node js:

const bigintCryptoUtils = require('bigint-crypto-utils');

// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');

console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6

console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3

console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2

// Generation of a probable prime of 2048 bits
const prime = await bigintCryptoUtils.prime(2048);

// Testing if a prime is a probable prime (Miller-Rabin)
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
    // code if is prime

// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = bigintCryptoUtils.randBetween(BigInt(2)**256);

From a browser, you can just load the module in a html page as:

  <script type="module">
    import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';

    let a = BigInt('5');
    let b = BigInt('2');
    let n = BigInt('19');

    console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6

    console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3

    console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2

    (async function () {
      // Generation of a probable prime of 2018 bits
      const p = await bigintCryptoUtils.prime(2048);

      // Testing if a prime is a probable prime (Miller-Rabin)
      const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
      alert(p.toString() + '\nIs prime?\n' + isPrime);

      // Get a cryptographically secure random number between 1 and 2**256 bits.
      const rnd = await bigintCryptoUtils.randBetween(BigInt(2)**256);
      alert(rnd);
    })();
  </script>

bigint-crypto-utils JS Doc

Constants

absbigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

eGcdegcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

gcdbigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

isProbablyPrimePromise

The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)

lcmbigint

The least common multiple computed as abs(a*b)/gcd(a,b)

modInvbigint

Modular inverse.

modPowbigint

Modular exponentiation a**b mod n

primePromise

A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI main process, and it can be much faster (if several cores or cpu are available).

randBetweenPromise

Returns a cryptographically secure random integer between [min,max]

randBytesPromise

Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()

toZnbigint

Finds the smallest positive element that is congruent to a in modulo n

Typedefs

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

abs ⇒ bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Kind: global constant
Returns: bigint - the absolute value of a

Param Type
a number | bigint

eGcd ⇒ egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global constant

Param Type
a number | bigint
b number | bigint

gcd ⇒ bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Kind: global constant
Returns: bigint - The greatest common divisor of a and b

Param Type
a number | bigint
b number | bigint

isProbablyPrime ⇒ Promise

The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)

Kind: global constant
Returns: Promise - A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)

Param Type Description
w bigint An integer to be tested for primality
iterations number The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3

lcm ⇒ bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Kind: global constant
Returns: bigint - The least common multiple of a and b

Param Type
a number | bigint
b number | bigint

modInv ⇒ bigint

Modular inverse.

Kind: global constant
Returns: bigint - the inverse modulo n

Param Type Description
a number | bigint The number to find an inverse for
n number | bigint The modulo

modPow ⇒ bigint

Modular exponentiation a**b mod n

Kind: global constant
Returns: bigint - a**b mod n

Param Type Description
a number | bigint base
b number | bigint exponent
n number | bigint modulo

prime ⇒ Promise

A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI main process, and it can be much faster (if several cores or cpu are available).

Kind: global constant
Returns: Promise - A promise that resolves to a bigint probable prime of bitLength bits

Param Type Description
bitLength number The required bit length for the generated prime
iterations number The number of iterations for the Miller-Rabin Probabilistic Primality Test

randBetween ⇒ Promise

Returns a cryptographically secure random integer between [min,max]

Kind: global constant
Returns: Promise - A promise that resolves to a cryptographically secure random bigint between [min,max]

Param Type Description
max bigint Returned value will be <= max
min bigint Returned value will be >= min

randBytes ⇒ Promise

Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()

Kind: global constant
Returns: Promise - A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes

Param Type Description
byteLength number The desired number of random bytes
forceLength boolean If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1

toZn ⇒ bigint

Finds the smallest positive element that is congruent to a in modulo n

Kind: global constant
Returns: bigint - The smallest positive representation of a in modulo n

Param Type Description
a number | bigint An integer
n number | bigint The modulo

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global typedef
Properties

Name Type
g bigint
x bigint
y bigint