Go to file
juanelas 069f8891d7 2.5.4 2020-04-07 17:04:41 +02:00
build Now the bundle can be mangled. Multi-threaded uses all CPUs but 1. Readme improvements 2020-04-07 17:03:30 +02:00
lib Now the bundle can be mangled. Multi-threaded uses all CPUs but 1. Readme improvements 2020-04-07 17:03:30 +02:00
src Now the bundle can be mangled. Multi-threaded uses all CPUs but 1. Readme improvements 2020-04-07 17:03:30 +02:00
test JS Standard. Some fixes with the test. Better structure 2020-04-06 13:34:03 +02:00
types Now the bundle can be mangled. Multi-threaded uses all CPUs but 1. Readme improvements 2020-04-07 17:03:30 +02:00
.gitignore no dist files to ignore 2020-04-06 19:05:24 +02:00
.npmignore JS Standard. Some fixes with the test. Better structure 2020-04-06 13:17:22 +02:00
LICENSE working with worker file 2019-04-19 09:42:28 +02:00
README.md Now the bundle can be mangled. Multi-threaded uses all CPUs but 1. Readme improvements 2020-04-07 17:03:30 +02:00
package-lock.json 2.5.4 2020-04-07 17:04:41 +02:00
package.json 2.5.4 2020-04-07 17:04:41 +02:00

README.md

JavaScript Style Guide

bigint-crypto-utils

Utils for working with cryptography using native JS (ES-2020) implementation of BigInt. It includes some extra functions to work with modular arithmetic along with secure random numbers and a fast strong probable prime generator/tester (parallelized multi-threaded Miller-Rabin primality test). It can be used by any Web Browser or webview supporting BigInt and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime with node --experimental-worker with Node.js version >= 10.5.0 and < 11.

The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography. Many platforms provide native support for cryptography, such as Web Cryptography API or Node.js Crypto.

Installation

bigint-crypto-utils is distributed for web browsers and/or webviews supporting BigInt as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.

bigint-crypto-utils can be imported to your project with npm:

npm install bigint-crypto-utils

NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.

For web browsers, you can also directly download the IIFE bundle or the ES6 bundle module from GitHub.

Usage examples

Import your module as :

  • Node.js
    const bigintCryptoUtils = require('bigint-crypto-utils')
    ... // your code here
    
  • JavaScript native project
    import * as bigintCryptoUtils from 'bigint-crypto-utils'
    ... // your code here
    
  • JavaScript native browser ES6 mod
    <script type="module">
       import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js'  // Use you actual path to the broser mod bundle
       ... // your code here
     </script>
    
  • JavaScript native browser IIFE
    <script src="../../lib/index.browser.bundle.js"></script> <!-- Use you actual path to the browser bundle -->
    <script>
      ... // your code here
    </script>
    
  • TypeScript
    import * as bigintCryptoUtils from 'bigint-crypto-utils'
    ... // your code here
    

    BigInt is ES-2020. In order to use it with TypeScript you should set lib (and probably also target and module) to esnext in tsconfig.json.

And you could use it like in the following:

/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
const a = BigInt('5')
const b = BigInt('2')
const n = 19n

console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6

console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3

console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2

console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits.

async function primeTesting () {
  // Output of a probable prime of 2048 bits
  console.log(await bigintCryptoUtils.prime(2048))

  // Testing if a number is a probable prime (Miller-Rabin)
  const number = 27n
  const isPrime = await bigintCryptoUtils.isProbablyPrime(number)
  if (isPrime) {
    console.log(`${number} is prime`)
  } else {
    console.log(`${number} is composite`)
  }
}

primeTesting()

API reference documentation

abs(a) ⇒ bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Kind: global function
Returns: bigint - the absolute value of a

Param Type
a number | bigint

bitLength(a) ⇒ number

Returns the bitlength of a number

Kind: global function
Returns: number - - the bit length

Param Type
a number | bigint

eGcd(a, b) ⇒ egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global function
Returns: egcdReturn - A triple (g, x, y), such that ax + by = g = gcd(a, b).

Param Type
a number | bigint
b number | bigint

gcd(a, b) ⇒ bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Kind: global function
Returns: bigint - The greatest common divisor of a and b

Param Type
a number | bigint
b number | bigint

lcm(a, b) ⇒ bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Kind: global function
Returns: bigint - The least common multiple of a and b

Param Type
a number | bigint
b number | bigint

max(a, b) ⇒ bigint

Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b

Kind: global function
Returns: bigint - maximum of numbers a and b

Param Type
a number | bigint
b number | bigint

min(a, b) ⇒ bigint

Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b

Kind: global function
Returns: bigint - minimum of numbers a and b

Param Type
a number | bigint
b number | bigint

modInv(a, n) ⇒ bigint

Modular inverse.

Kind: global function
Returns: bigint - the inverse modulo n or NaN if it does not exist

Param Type Description
a number | bigint The number to find an inverse for
n number | bigint The modulo

modPow(b, e, n) ⇒ bigint

Modular exponentiation b**e mod n. Currently using the right-to-left binary method

Kind: global function
Returns: bigint - b**e mod n

Param Type Description
b number | bigint base
e number | bigint exponent
n number | bigint modulo

toZn(a, n) ⇒ bigint

Finds the smallest positive element that is congruent to a in modulo n

Kind: global function
Returns: bigint - The smallest positive representation of a in modulo n

Param Type Description
a number | bigint An integer
n number | bigint The modulo

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global typedef
Properties

Name Type
g bigint
x bigint
y bigint