[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com) {{GITHUB_ACTIONS_BADGES}} # {{PKG_NAME}} Arbitrary precision modular arithmetic, cryptographically secure random numbers and strong probable prime generation/testing. It relies on the native JS implementation of ([BigInt](https://tc39.es/ecma262/#sec-bigint-objects)). It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). The bundles can be imported directly by the browser or in Angular projects, React apps, Node.js, etc. Secure random numbers are generated using the native crypto implementation of the browsers ([Web Cryptography API](https://w3c.github.io/webcrypto/)) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html). Strong probable prime generation and testing use Miller-Rabin primality tests and are automatically sped up using parallel workers both in browsers and Node.js. > The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html). ## Usage `{{PKG_NAME}}` can be imported to your project with `npm`: ```console npm install {{PKG_NAME}} ``` Then either require (Node.js CJS): ```javascript const {{PKG_CAMELCASE}} = require('{{PKG_NAME}}') ``` or import (JavaScript ES module): ```javascript import * as {{PKG_CAMELCASE}} from '{{PKG_NAME}}' ``` The appropriate version for browser or node is automatically exported. > `{{PKG_NAME}}` uses [ES2020 BigInt](https://tc39.es/ecma262/#sec-bigint-objects), so take into account that: > 1. If you experience issues using webpack/babel to create your production bundles, you may edit the supported browsers list and leave only [supported browsers and versions](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). The browsers list is usually located in your project's `package.json` or the `.browserslistrc` file. > 2. In order to use `{{PKG_NAME}}` with TypeScript you need to set `target`, and `lib` and `module` if in use, to `ES2020` in your project's `tsconfig.json`. You can also download the {{IIFE_BUNDLE}}, the {{ESM_BUNDLE}} or the {{UMD_BUNDLE}} and manually add it to your project, or, if you have already installed `{{PKG_NAME}}` in your project, just get the bundles from `node_modules/{{PKG_NAME}}/dist/bundles/`. An example of usage could be: ```typescript /* A BigInt with value 666 can be declared calling the bigint constructor as BigInt('666') or with the shorter 666n. Notice that you can also pass a number to the constructor, e.g. BigInt(666). However, it is not recommended since values over 2**53 - 1 won't be safe but no warning will be raised. */ const a = BigInt('5') const b = BigInt('2') const n = 19n console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6 console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3 console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2 console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits. async function primeTesting (): void { // Output of a probable prime of 2048 bits console.log(await bigintCryptoUtils.prime(2048)) // Testing if a number is a probable prime (Miller-Rabin) const number = 27n const isPrime = await bigintCryptoUtils.isProbablyPrime(number) if (isPrime === true) { console.log(`${number} is prime`) } else { console.log(`${number} is composite`) } } primeTesting() ``` ## API reference documentation [Check the API](./docs/API.md)