'use strict' /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param {number|bigint} a * * @returns {bigint} the absolute value of a */ function abs (a) { a = BigInt(a) return (a >= 0n) ? a : -a } /** * Returns the bitlength of a number * * @param {number|bigint} a * @returns {number} - the bit length */ function bitLength (a) { a = BigInt(a) if (a === 1n) { return 1 } let bits = 1 do { bits++ } while ((a >>= 1n) > 1n) return bits } /** * @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b). * @property {bigint} g * @property {bigint} x * @property {bigint} y */ /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param {number|bigint} a * @param {number|bigint} b * * @throws {RangeError} a and b MUST be > 0 * * @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd (a, b) { a = BigInt(a) b = BigInt(b) if (a <= 0n | b <= 0n) throw new RangeError('a and b MUST be > 0') // a and b MUST be positive let x = 0n let y = 1n let u = 1n let v = 0n while (a !== 0n) { const q = b / a const r = b % a const m = x - (u * q) const n = y - (v * q) b = a a = r x = u y = v u = m v = n } return { g: b, x: x, y: y } } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The greatest common divisor of a and b */ function gcd (a, b) { a = abs(a) b = abs(b) if (a === 0n) { return b } else if (b === 0n) { return a } let shift = 0n while (!((a | b) & 1n)) { a >>= 1n b >>= 1n shift++ } while (!(a & 1n)) a >>= 1n do { while (!(b & 1n)) b >>= 1n if (a > b) { const x = a a = b b = x } b -= a } while (b) // rescale return a << shift } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The least common multiple of a and b */ function lcm (a, b) { a = BigInt(a) b = BigInt(b) if (a === 0n && b === 0n) return BigInt(0) return abs(a * b) / gcd(a, b) } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} maximum of numbers a and b */ function max (a, b) { a = BigInt(a) b = BigInt(b) return (a >= b) ? a : b } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} minimum of numbers a and b */ function min (a, b) { a = BigInt(a) b = BigInt(b) return (a >= b) ? b : a } /** * Modular inverse. * * @param {number|bigint} a The number to find an inverse for * @param {number|bigint} n The modulo * * @throws {RangeError} a does not have inverse modulo n * * @returns {bigint} the inverse modulo n */ function modInv (a, n) { const egcd = eGcd(toZn(a, n), n) if (egcd.g !== 1n) { throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`) // modular inverse does not exist } else { return toZn(egcd.x, n) } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param {number|bigint} b base * @param {number|bigint} e exponent * @param {number|bigint} n modulo * * @returns {bigint} b**e mod n */ function modPow (b, e, n) { n = BigInt(n) if (n === 0n) { throw new RangeError('n must be > 0') } else if (n === 1n) { return BigInt(0) } b = toZn(b, n) e = BigInt(e) if (e < 0n) { return modInv(modPow(b, abs(e), n), n) } let r = 1n while (e > 0) { if ((e % 2n) === 1n) { r = (r * b) % n } e = e / 2n b = b ** 2n % n } return r } /** * Finds the smallest positive element that is congruent to a in modulo n * @param {number|bigint} a An integer * @param {number|bigint} n The modulo * * @returns {bigint} The smallest positive representation of a in modulo n */ function toZn (a, n) { n = BigInt(n) if (n <= 0) { return NaN } a = BigInt(a) % n return (a < 0) ? a + n : a } /** * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several * iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1) * * @param {number | bigint} w A positive integer to be tested for primality * @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 * @param {boolean} [disableWorkers = false] Disable the use of workers for the primality test * * @throws {RangeError} w MUST be >= 0 * * @returns {Promise} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite) */ function isProbablyPrime (w, iterations = 16, disableWorkers = false) { if (typeof w === 'number') { w = BigInt(w) } if (w < 0) throw RangeError('w MUST be >= 0') /* eslint-disable no-lone-blocks */ { // Node.js /* istanbul ignore else */ if (!disableWorkers && _useWorkers) { const { Worker } = require('worker_threads') return new Promise((resolve, reject) => { const worker = new Worker(__filename) worker.on('message', (data) => { worker.terminate() resolve(data.isPrime) }) worker.on('error', reject) worker.postMessage({ rnd: w, iterations: iterations, id: 0 }) }) } else { return new Promise((resolve) => { resolve(_isProbablyPrime(w, iterations)) }) } } /* eslint-enable no-lone-blocks */ } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI * main process, and it can be much faster (if several cores or cpu are available). * The node version can also use worker_threads if they are available (enabled by default with Node 11 and * and can be enabled at runtime executing node --experimental-worker with node >=10.5.0). * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits. */ function prime (bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0') /* istanbul ignore if */ if (!_useWorkers) { // If there is no support for workers let rnd = 0n do { rnd = fromBuffer(randBitsSync(bitLength, true)) } while (!_isProbablyPrime(rnd, iterations)) return new Promise((resolve) => { resolve(rnd) }) } return new Promise((resolve) => { const workerList = [] const _onmessage = (msg, newWorker) => { if (msg.isPrime) { // if a prime number has been found, stop all the workers, and return it for (let j = 0; j < workerList.length; j++) { workerList[j].terminate() } while (workerList.length) { workerList.pop() } resolve(msg.value) } else { // if a composite is found, make the worker test another random number const buf = randBitsSync(bitLength, true) const rnd = fromBuffer(buf) try { newWorker.postMessage({ rnd: rnd, iterations: iterations, id: msg.id }) } catch (error) { // The worker has already terminated. There is nothing to handle here } } } /* eslint-disable no-lone-blocks */ { // Node.js const { cpus } = require('os') const { Worker } = require('worker_threads') for (let i = 0; i < cpus().length - 1; i++) { const newWorker = new Worker(__filename) newWorker.on('message', (msg) => _onmessage(msg, newWorker)) workerList.push(newWorker) } } /* eslint-enable no-lone-blocks */ for (let i = 0; i < workerList.length; i++) { randBits(bitLength, true).then(function (buf) { const rnd = fromBuffer(buf) workerList[i].postMessage({ rnd: rnd, iterations: iterations, id: i }) }) } }) } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead. * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} bitLength MUST be > 0 * * @returns {bigint} A bigint probable prime of bitLength bits. */ function primeSync (bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0') let rnd = 0n do { rnd = fromBuffer(randBitsSync(bitLength, true)) } while (!_isProbablyPrime(rnd, iterations)) return rnd } /** * Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0 * @param {bigint} max Returned value will be <= max * @param {bigint} [min = BigInt(1)] Returned value will be >= min * * @throws {RangeError} Arguments MUST be: max > 0 && min >=0 && max > min * * @returns {bigint} A cryptographically secure random bigint between [min,max] */ function randBetween (max, min = 1n) { if (max <= 0n || min < 0n || max <= min) throw new RangeError('Arguments MUST be: max > 0 && min >=0 && max > min') const interval = max - min const bitLen = bitLength(interval) let rnd do { const buf = randBitsSync(bitLen) rnd = fromBuffer(buf) } while (rnd > interval) return rnd + min } /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} bitLength The desired number of random bits * @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Promise} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits */ function randBits (bitLength, forceLength = false) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0') const byteLength = Math.ceil(bitLength / 8) const bitLengthMod8 = bitLength % 8 return new Promise((resolve) => { randBytes(byteLength, false).then(function (rndBytes) { if (bitLengthMod8) { // Fill with 0's the extra bits rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1) } if (forceLength) { const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128 rndBytes[0] = rndBytes[0] | mask } resolve(rndBytes) }) }) } /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * @param {number} bitLength The desired number of random bits * @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits */ function randBitsSync (bitLength, forceLength = false) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0') const byteLength = Math.ceil(bitLength / 8) const rndBytes = randBytesSync(byteLength, false) const bitLengthMod8 = bitLength % 8 if (bitLengthMod8) { // Fill with 0's the extra bits rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1) } if (forceLength) { const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128 rndBytes[0] = rndBytes[0] | mask } return rndBytes } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} byteLength MUST be > 0 * * @returns {Promise} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ function randBytes (byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError('byteLength MUST be > 0') return new Promise(function (resolve, reject) { /* eslint-disable no-lone-blocks */ { const crypto = require('crypto') crypto.randomBytes(byteLength, function (err, buf) { /* istanbul ignore if */ if (err) reject(err) // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128 resolve(buf) }) } /* eslint-enable no-lone-blocks */ }) } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} byteLength MUST be > 0 * * @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ function randBytesSync (byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError('byteLength MUST be > 0') /* eslint-disable no-lone-blocks */ { // node const crypto = require('crypto') const buf = crypto.randomBytes(byteLength) // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128 return buf } /* eslint-enable no-lone-blocks */ } /* HELPER FUNCTIONS */ function fromBuffer (buf) { let ret = 0n for (const i of buf.values()) { const bi = BigInt(i) ret = (ret << BigInt(8)) + bi } return ret } function _isProbablyPrime (w, iterations = 16) { /* PREFILTERING. Even values but 2 are not primes, so don't test. 1 is not a prime and the M-R algorithm needs w>1. */ if (w === 2n) return true else if ((w & 1n) === 0n || w === 1n) return false /* Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above. */ const firstPrimes = [ 3n, 5n, 7n, 11n, 13n, 17n, 19n, 23n, 29n, 31n, 37n, 41n, 43n, 47n, 53n, 59n, 61n, 67n, 71n, 73n, 79n, 83n, 89n, 97n, 101n, 103n, 107n, 109n, 113n, 127n, 131n, 137n, 139n, 149n, 151n, 157n, 163n, 167n, 173n, 179n, 181n, 191n, 193n, 197n, 199n, 211n, 223n, 227n, 229n, 233n, 239n, 241n, 251n, 257n, 263n, 269n, 271n, 277n, 281n, 283n, 293n, 307n, 311n, 313n, 317n, 331n, 337n, 347n, 349n, 353n, 359n, 367n, 373n, 379n, 383n, 389n, 397n, 401n, 409n, 419n, 421n, 431n, 433n, 439n, 443n, 449n, 457n, 461n, 463n, 467n, 479n, 487n, 491n, 499n, 503n, 509n, 521n, 523n, 541n, 547n, 557n, 563n, 569n, 571n, 577n, 587n, 593n, 599n, 601n, 607n, 613n, 617n, 619n, 631n, 641n, 643n, 647n, 653n, 659n, 661n, 673n, 677n, 683n, 691n, 701n, 709n, 719n, 727n, 733n, 739n, 743n, 751n, 757n, 761n, 769n, 773n, 787n, 797n, 809n, 811n, 821n, 823n, 827n, 829n, 839n, 853n, 857n, 859n, 863n, 877n, 881n, 883n, 887n, 907n, 911n, 919n, 929n, 937n, 941n, 947n, 953n, 967n, 971n, 977n, 983n, 991n, 997n, 1009n, 1013n, 1019n, 1021n, 1031n, 1033n, 1039n, 1049n, 1051n, 1061n, 1063n, 1069n, 1087n, 1091n, 1093n, 1097n, 1103n, 1109n, 1117n, 1123n, 1129n, 1151n, 1153n, 1163n, 1171n, 1181n, 1187n, 1193n, 1201n, 1213n, 1217n, 1223n, 1229n, 1231n, 1237n, 1249n, 1259n, 1277n, 1279n, 1283n, 1289n, 1291n, 1297n, 1301n, 1303n, 1307n, 1319n, 1321n, 1327n, 1361n, 1367n, 1373n, 1381n, 1399n, 1409n, 1423n, 1427n, 1429n, 1433n, 1439n, 1447n, 1451n, 1453n, 1459n, 1471n, 1481n, 1483n, 1487n, 1489n, 1493n, 1499n, 1511n, 1523n, 1531n, 1543n, 1549n, 1553n, 1559n, 1567n, 1571n, 1579n, 1583n, 1597n ] for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) { const p = firstPrimes[i] if (w === p) return true else if (w % p === 0n) return false } /* 1. Let a be the largest integer such that 2**a divides w−1. 2. m = (w−1) / 2**a. 3. wlen = len (w). 4. For i = 1 to iterations do 4.1 Obtain a string b of wlen bits from an RBG. Comment: Ensure that 1 < b < w−1. 4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1. 4.3 z = b**m mod w. 4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 4.5 For j = 1 to a − 1 do. 4.5.1 z = z**2 mod w. 4.5.2 If (z = w−1), then go to step 4.7. 4.5.3 If (z = 1), then go to step 4.6. 4.6 Return COMPOSITE. 4.7 Continue. Comment: Increment i for the do-loop in step 4. 5. Return PROBABLY PRIME. */ let a = 0n const d = w - 1n let aux = d while (aux % 2n === 0n) { aux /= 2n ++a } const m = d / (2n ** a) do { const b = randBetween(d, 2n) let z = modPow(b, m, w) if (z === 1n || z === d) continue let j = 1 while (j < a) { z = modPow(z, 2n, w) if (z === d) break if (z === 1n) return false j++ } if (z !== d) return false } while (--iterations) return true } let _useWorkers = false // The following is just to check whether we can use workers /* eslint-disable no-lone-blocks */ { // Node.js try { require.resolve('worker_threads') _useWorkers = true } catch (e) { /* istanbul ignore next */ console.log(`[bigint-crypto-utils] WARNING: This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers. · With Node >=11 it is enabled by default (consider upgrading). · With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `) /* istanbul ignore next */ _useWorkers = true } } /* eslint-enable no-lone-blocks */ if (_useWorkers) { // node.js with support for workers const { parentPort, isMainThread } = require('worker_threads') /* istanbul ignore if */ if (!isMainThread) { // worker parentPort.on('message', function (data) { // Let's start once we are called // data = {rnd: , iterations: } const isPrime = _isProbablyPrime(data.rnd, data.iterations) parentPort.postMessage({ isPrime: isPrime, value: data.rnd, id: data.id }) }) } } exports.abs = abs exports.bitLength = bitLength exports.eGcd = eGcd exports.gcd = gcd exports.isProbablyPrime = isProbablyPrime exports.lcm = lcm exports.max = max exports.min = min exports.modInv = modInv exports.modPow = modPow exports.prime = prime exports.primeSync = primeSync exports.randBetween = randBetween exports.randBits = randBits exports.randBitsSync = randBitsSync exports.randBytes = randBytes exports.randBytesSync = randBytesSync exports.toZn = toZn