/** * A triple (g, x, y), such that ax + by = g = gcd(a, b). */ export type egcdReturn = { g: bigint; x: bigint; y: bigint; }; /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param {number|bigint} a * * @returns {bigint} the absolute value of a */ export function abs(a: number | bigint): bigint; /** * Returns the bitlength of a number * * @param {number|bigint} a * @returns {number} - the bit length */ export function bitLength(a: number | bigint): number; /** * @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b). * @property {bigint} g * @property {bigint} x * @property {bigint} y */ /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param {number|bigint} a * @param {number|bigint} b * * @throws {RangeError} a and b MUST be > 0 * * @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b). */ export function eGcd(a: number | bigint, b: number | bigint): egcdReturn; /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The greatest common divisor of a and b */ export function gcd(a: number | bigint, b: number | bigint): bigint; /** * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several * iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1) * * @param {number | bigint} w A positive integer to be tested for primality * @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 * @param {boolean} [disableWorkers = false] Disable the use of workers for the primality test * * @throws {RangeError} w MUST be >= 0 * * @returns {Promise} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite) */ export function isProbablyPrime(w: number | bigint, iterations?: number, disableWorkers?: boolean): Promise; /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The least common multiple of a and b */ export function lcm(a: number | bigint, b: number | bigint): bigint; /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} maximum of numbers a and b */ export function max(a: number | bigint, b: number | bigint): bigint; /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} minimum of numbers a and b */ export function min(a: number | bigint, b: number | bigint): bigint; /** * Modular inverse. * * @param {number|bigint} a The number to find an inverse for * @param {number|bigint} n The modulo * * @throws {RangeError} a does not have inverse modulo n * * @returns {bigint} the inverse modulo n */ export function modInv(a: number | bigint, n: number | bigint): bigint; /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param {number|bigint} b base * @param {number|bigint} e exponent * @param {number|bigint} n modulo * * @returns {bigint} b**e mod n */ export function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint; /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI * main process, and it can be much faster (if several cores or cpu are available). * The node version can also use worker_threads if they are available (enabled by default with Node 11 and * and can be enabled at runtime executing node --experimental-worker with node >=10.5.0). * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits. */ export function prime(bitLength: number, iterations?: number): Promise; /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead. * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} bitLength MUST be > 0 * * @returns {bigint} A bigint probable prime of bitLength bits. */ export function primeSync(bitLength: number, iterations?: number): bigint; /** * Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0 * @param {bigint} max Returned value will be <= max * @param {bigint} [min = BigInt(1)] Returned value will be >= min * * @throws {RangeError} Arguments MUST be: max > 0 && min >=0 && max > min * * @returns {bigint} A cryptographically secure random bigint between [min,max] */ export function randBetween(max: bigint, min?: bigint): bigint; /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} bitLength The desired number of random bits * @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Promise} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits */ export function randBits(bitLength: number, forceLength?: boolean): Promise; /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * @param {number} bitLength The desired number of random bits * @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} bitLength MUST be > 0 * * @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits */ export function randBitsSync(bitLength: number, forceLength?: boolean): Buffer | Uint8Array; /** * Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} byteLength MUST be > 0 * * @returns {Promise} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ export function randBytes(byteLength: number, forceLength?: boolean): Promise; /** * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} byteLength MUST be > 0 * * @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ export function randBytesSync(byteLength: number, forceLength?: boolean): Buffer | Uint8Array; /** * Finds the smallest positive element that is congruent to a in modulo n * @param {number|bigint} a An integer * @param {number|bigint} n The modulo * * @returns {bigint} The smallest positive representation of a in modulo n */ export function toZn(a: number | bigint, n: number | bigint): bigint;