'use strict'; const _ZERO = BigInt(0); const _ONE = BigInt(1); const _TWO = BigInt(2); /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param {number|bigint} a * * @returns {bigint} the absolute value of a */ export function abs(a) { a = BigInt(a); return (a >= _ZERO) ? a : -a; } /** * Returns the bitlength of a number * * @param {number|bigint} a * @returns {number} - the bit length */ export function bitLength(a) { a = BigInt(a); if (a === _ONE) return 1; let bits = 1; do { bits++; } while ((a >>= _ONE) > _ONE); return bits; } /** * @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b). * @property {bigint} g * @property {bigint} x * @property {bigint} y */ /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param {number|bigint} a * @param {number|bigint} b * * @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b). */ export function eGcd(a, b) { a = BigInt(a); b = BigInt(b); if (a <= _ZERO | b <= _ZERO) return NaN; // a and b MUST be positive let x = _ZERO; let y = _ONE; let u = _ONE; let v = _ZERO; while (a !== _ZERO) { let q = b / a; let r = b % a; let m = x - (u * q); let n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { b: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The greatest common divisor of a and b */ export function gcd(a, b) { a = abs(a); b = abs(b); if (a === _ZERO) return b; else if (b === _ZERO) return a; let shift = _ZERO; while (!((a | b) & _ONE)) { a >>= _ONE; b >>= _ONE; shift++; } while (!(a & _ONE)) a >>= _ONE; do { while (!(b & _ONE)) b >>= _ONE; if (a > b) { let x = a; a = b; b = x; } b -= a; } while (b); // rescale return a << shift; } /** * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several * iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1) * * @param {number|bigint} w An integer to be tested for primality * @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 * * @return {Promise} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite) */ export async function isProbablyPrime(w, iterations = 16) { if (typeof w === 'number') { w = BigInt(w); } if (!process.browser) { // Node.js if (_useWorkers) { const { Worker } = require('worker_threads'); return new Promise((resolve, reject) => { const worker = new Worker(__filename); worker.on('message', (data) => { worker.terminate(); resolve(data.isPrime); }); worker.on('error', reject); worker.postMessage({ 'rnd': w, 'iterations': iterations, 'id': 0 }); }); } else { return new Promise((resolve) => { resolve(_isProbablyPrime(w, iterations)); }); } } else { // browser return new Promise((resolve, reject) => { const worker = new Worker(_isProbablyPrimeWorkerUrl()); worker.onmessage = (event) => { worker.terminate(); resolve(event.data.isPrime); }; worker.onmessageerror = (event) => { reject(event); }; worker.postMessage({ 'rnd': w, 'iterations': iterations, 'id': 0 }); }); } } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} The least common multiple of a and b */ export function lcm(a, b) { a = BigInt(a); b = BigInt(b); if (a === _ZERO && b === _ZERO) return _ZERO; return abs(a * b) / gcd(a, b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} maximum of numbers a and b */ export function max(a, b) { a = BigInt(a); b = BigInt(b); return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param {number|bigint} a * @param {number|bigint} b * * @returns {bigint} minimum of numbers a and b */ export function min(a, b) { a = BigInt(a); b = BigInt(b); return (a >= b) ? b : a; } /** * Modular inverse. * * @param {number|bigint} a The number to find an inverse for * @param {number|bigint} n The modulo * * @returns {bigint} the inverse modulo n or NaN if it does not exist */ export function modInv(a, n) { if (a == _ZERO | n <= _ZERO) return NaN; let egcd = eGcd(toZn(a, n), n); if (egcd.b !== _ONE) { return NaN; // modular inverse does not exist } else { return toZn(egcd.x, n); } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param {number|bigint} b base * @param {number|bigint} e exponent * @param {number|bigint} n modulo * * @returns {bigint} b**e mod n */ export function modPow(b, e, n) { n = BigInt(n); if (n === _ZERO) return NaN; else if (n === _ONE) return _ZERO; b = toZn(b, n); e = BigInt(e); if (e < _ZERO) { return modInv(modPow(b, abs(e), n), n); } let r = _ONE; while (e > 0) { if ((e % _TWO) === _ONE) { r = (r * b) % n; } e = e / _TWO; b = b ** _TWO % n; } return r; } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI * main process, and it can be much faster (if several cores or cpu are available). * The node version can also use worker_threads if they are available (enabled by default with Node 11 and * and can be enabled at runtime executing node --experimental-worker with node >=10.5.0). * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits. */ export function prime(bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`); if (!process.browser && !_useWorkers) { let rnd = _ZERO; do { rnd = fromBuffer(randBytesSync(bitLength / 8, true)); } while (!_isProbablyPrime(rnd, iterations)); return new Promise((resolve) => { resolve(rnd); }); } return new Promise((resolve) => { let workerList = []; const _onmessage = (msg, newWorker) => { if (msg.isPrime) { // if a prime number has been found, stop all the workers, and return it for (let j = 0; j < workerList.length; j++) { workerList[j].terminate(); } while (workerList.length) { workerList.pop(); } resolve(msg.value); } else { // if a composite is found, make the worker test another random number let buf = randBits(bitLength, true); let rnd = fromBuffer(buf); try { newWorker.postMessage({ 'rnd': rnd, 'iterations': iterations, 'id': msg.id }); } catch (error) { // The worker has already terminated. There is nothing to handle here } } }; if (process.browser) { //browser let workerURL = _isProbablyPrimeWorkerUrl(); for (let i = 0; i < self.navigator.hardwareConcurrency; i++) { let newWorker = new Worker(workerURL); newWorker.onmessage = (event) => _onmessage(event.data, newWorker); workerList.push(newWorker); } } else { // Node.js const { cpus } = require('os'); const { Worker } = require('worker_threads'); for (let i = 0; i < cpus().length; i++) { let newWorker = new Worker(__filename); newWorker.on('message', (msg) => _onmessage(msg, newWorker)); workerList.push(newWorker); } } for (let i = 0; i < workerList.length; i++) { let buf = randBits(bitLength, true); let rnd = fromBuffer(buf); workerList[i].postMessage({ 'rnd': rnd, 'iterations': iterations, 'id': i }); } }); } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead. * * @param {number} bitLength The required bit length for the generated prime * @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @returns {bigint} A bigint probable prime of bitLength bits. */ export function primeSync(bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`); let rnd = _ZERO; do { rnd = fromBuffer(randBytesSync(bitLength / 8, true)); } while (!_isProbablyPrime(rnd, iterations)); return rnd; } /** * Returns a cryptographically secure random integer between [min,max] * @param {bigint} max Returned value will be <= max * @param {bigint} [min = BigInt(1)] Returned value will be >= min * * @returns {bigint} A cryptographically secure random bigint between [min,max] */ export function randBetween(max, min = _ONE) { if (max <= min) throw new Error('max must be > min'); const interval = max - min; let bitLen = bitLength(interval); let rnd; do { let buf = randBits(bitLen); rnd = fromBuffer(buf); } while (rnd > interval); return rnd + min; } /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} bitLength The desired number of random bits * @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @returns {Buffer|Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits */ export function randBits(bitLength, forceLength = false) { if (bitLength < 1) throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`); const byteLength = Math.ceil(bitLength / 8); const rndBytes = randBytesSync(byteLength, false); const bitLengthMod8 = bitLength % 8; if (bitLengthMod8) { // Fill with 0's the extra bits rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1); } if (forceLength) { const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128; rndBytes[0] = rndBytes[0] | mask; } return rndBytes; } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @returns {Promise} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ export function randBytes(byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`); let buf; if (!process.browser) { // node const crypto = require('crypto'); buf = Buffer.alloc(byteLength); return crypto.randomFill(buf, function (resolve) { // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128; resolve(buf); }); } else { // browser return new Promise(function (resolve) { buf = new Uint8Array(byteLength); self.crypto.getRandomValues(buf); // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128; resolve(buf); }); } } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param {number} byteLength The desired number of random bytes * @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @returns {Buffer|Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes */ export function randBytesSync(byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`); let buf; if (!process.browser) { // node const crypto = require('crypto'); buf = Buffer.alloc(byteLength); crypto.randomFillSync(buf); } else { // browser buf = new Uint8Array(byteLength); self.crypto.getRandomValues(buf); } // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128; return buf; } /** * Finds the smallest positive element that is congruent to a in modulo n * @param {number|bigint} a An integer * @param {number|bigint} n The modulo * * @returns {bigint} The smallest positive representation of a in modulo n */ export function toZn(a, n) { n = BigInt(n); if (n <= 0) return NaN; a = BigInt(a) % n; return (a < 0) ? a + n : a; } /* HELPER FUNCTIONS */ function fromBuffer(buf) { let ret = _ZERO; for (let i of buf.values()) { let bi = BigInt(i); ret = (ret << BigInt(8)) + bi; } return ret; } function _isProbablyPrimeWorkerUrl() { // Let's us first add all the required functions let workerCode = `'use strict';const _ZERO = BigInt(0);const _ONE = BigInt(1);const _TWO = BigInt(2);const eGcd = ${eGcd.toString()};const modInv = ${modInv.toString()};const modPow = ${modPow.toString()};const toZn = ${toZn.toString()};const randBits = ${randBits.toString()};const randBytesSync = ${randBytesSync.toString()};const randBetween = ${randBetween.toString()};const isProbablyPrime = ${_isProbablyPrime.toString()};${bitLength.toString()}${fromBuffer.toString()}`; const onmessage = async function (event) { // Let's start once we are called // event.data = {rnd: , iterations: } const isPrime = await isProbablyPrime(event.data.rnd, event.data.iterations); postMessage({ 'isPrime': isPrime, 'value': event.data.rnd, 'id': event.data.id }); }; workerCode += `onmessage = ${onmessage.toString()};`; return _workerUrl(workerCode); } function _workerUrl(workerCode) { workerCode = `(() => {${workerCode}})()`; // encapsulate IIFE const _blob = new Blob([workerCode], { type: 'text/javascript' }); return window.URL.createObjectURL(_blob); } function _isProbablyPrime(w, iterations = 16) { /* PREFILTERING. Even values but 2 are not primes, so don't test. 1 is not a prime and the M-R algorithm needs w>1. */ if (w === _TWO) return true; else if ((w & _ONE) === _ZERO || w === _ONE) return false; /* Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above. */ const firstPrimes = [ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, ]; for (let i = 0; i < firstPrimes.length && (BigInt(firstPrimes[i]) <= w); i++) { const p = BigInt(firstPrimes[i]); if (w === p) return true; else if (w % p === _ZERO) return false; } /* 1. Let a be the largest integer such that 2**a divides w−1. 2. m = (w−1) / 2**a. 3. wlen = len (w). 4. For i = 1 to iterations do 4.1 Obtain a string b of wlen bits from an RBG. Comment: Ensure that 1 < b < w−1. 4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1. 4.3 z = b**m mod w. 4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 4.5 For j = 1 to a − 1 do. 4.5.1 z = z**2 mod w. 4.5.2 If (z = w−1), then go to step 4.7. 4.5.3 If (z = 1), then go to step 4.6. 4.6 Return COMPOSITE. 4.7 Continue. Comment: Increment i for the do-loop in step 4. 5. Return PROBABLY PRIME. */ let a = _ZERO, d = w - _ONE; while (d % _TWO === _ZERO) { d /= _TWO; ++a; } let m = (w - _ONE) / (_TWO ** a); loop: do { let b = randBetween(w - _ONE, _TWO); let z = modPow(b, m, w); if (z === _ONE || z === w - _ONE) continue; for (let j = 1; j < a; j++) { z = modPow(z, _TWO, w); if (z === w - _ONE) continue loop; if (z === _ONE) break; } return false; } while (--iterations); return true; } let _useWorkers = true; // The following is just to check whether Node.js can use workers if (!process.browser) { // Node.js _useWorkers = (function _workers() { try { require.resolve('worker_threads'); return true; } catch (e) { console.log(`[bigint-crypto-utils] WARNING: This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers. · With Node 11 it is enabled by default (consider upgrading). · With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `); return false; } })(); } if (!process.browser && _useWorkers) { // node.js with support for workers const { parentPort, isMainThread } = require('worker_threads'); if (!isMainThread) { // worker parentPort.on('message', function (data) { // Let's start once we are called // data = {rnd: , iterations: } const isPrime = _isProbablyPrime(data.rnd, data.iterations); parentPort.postMessage({ 'isPrime': isPrime, 'value': data.rnd, 'id': data.id }); }); } }