'use strict'; Object.defineProperty(exports, '__esModule', { value: true }); var index_node = {}; Object.defineProperty(index_node, '__esModule', { value: true }); /** * Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0 * * @param a * * @returns The absolute value of a */ function abs(a) { return (a >= 0) ? a : -a; } /** * Returns the bitlength of a number * * @param a * @returns The bit length */ function bitLength(a) { if (typeof a === 'number') a = BigInt(a); if (a === 1n) { return 1; } let bits = 1; do { bits++; } while ((a >>= 1n) > 1n); return bits; } /** * An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. * Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b). * * @param a * @param b * * @throws {RangeError} * This excepction is thrown if a or b are less than 0 * * @returns A triple (g, x, y), such that ax + by = g = gcd(a, b). */ function eGcd(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a <= 0n || b <= 0n) throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive let x = 0n; let y = 1n; let u = 1n; let v = 0n; while (a !== 0n) { const q = b / a; const r = b % a; const m = x - (u * q); const n = y - (v * q); b = a; a = r; x = u; y = v; u = m; v = n; } return { g: b, x: x, y: y }; } /** * Greatest-common divisor of two integers based on the iterative binary algorithm. * * @param a * @param b * * @returns The greatest common divisor of a and b */ function gcd(a, b) { let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a); let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b); if (aAbs === 0n) { return bAbs; } else if (bAbs === 0n) { return aAbs; } let shift = 0n; while (((aAbs | bAbs) & 1n) === 0n) { aAbs >>= 1n; bAbs >>= 1n; shift++; } while ((aAbs & 1n) === 0n) aAbs >>= 1n; do { while ((bAbs & 1n) === 0n) bAbs >>= 1n; if (aAbs > bAbs) { const x = aAbs; aAbs = bAbs; bAbs = x; } bAbs -= aAbs; } while (bAbs !== 0n); // rescale return aAbs << shift; } /** * The least common multiple computed as abs(a*b)/gcd(a,b) * @param a * @param b * * @returns The least common multiple of a and b */ function lcm(a, b) { if (typeof a === 'number') a = BigInt(a); if (typeof b === 'number') b = BigInt(b); if (a === 0n && b === 0n) return BigInt(0); // return abs(a * b) as bigint / gcd(a, b) return abs((a / gcd(a, b)) * b); } /** * Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b * * @param a * @param b * * @returns Maximum of numbers a and b */ function max(a, b) { return (a >= b) ? a : b; } /** * Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b * * @param a * @param b * * @returns Minimum of numbers a and b */ function min(a, b) { return (a >= b) ? b : a; } /** * Finds the smallest positive element that is congruent to a in modulo n * * @remarks * a and b must be the same type, either number or bigint * * @param a - An integer * @param n - The modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns A bigint with the smallest positive representation of a modulo n */ function toZn(a, n) { if (typeof a === 'number') a = BigInt(a); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } const aZn = a % n; return (aZn < 0n) ? aZn + n : aZn; } /** * Modular inverse. * * @param a The number to find an inverse for * @param n The modulo * * @throws {RangeError} * Excpeption thorwn when a does not have inverse modulo n * * @returns The inverse modulo n */ function modInv(a, n) { const egcd = eGcd(toZn(a, n), n); if (egcd.g !== 1n) { throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist } else { return toZn(egcd.x, n); } } /** * Modular exponentiation b**e mod n. Currently using the right-to-left binary method * * @param b base * @param e exponent * @param n modulo * * @throws {RangeError} * Excpeption thrown when n is not > 0 * * @returns b**e mod n */ function modPow(b, e, n) { if (typeof b === 'number') b = BigInt(b); if (typeof e === 'number') e = BigInt(e); if (typeof n === 'number') n = BigInt(n); if (n <= 0n) { throw new RangeError('n must be > 0'); } else if (n === 1n) { return 0n; } b = toZn(b, n); if (e < 0n) { return modInv(modPow(b, abs(e), n), n); } let r = 1n; while (e > 0) { if ((e % 2n) === 1n) { r = r * b % n; } e = e / 2n; b = b ** 2n % n; } return r; } var abs_1 = index_node.abs = abs; var bitLength_1 = index_node.bitLength = bitLength; var eGcd_1 = index_node.eGcd = eGcd; var gcd_1 = index_node.gcd = gcd; var lcm_1 = index_node.lcm = lcm; var max_1 = index_node.max = max; var min_1 = index_node.min = min; var modInv_1 = index_node.modInv = modInv; var modPow_1 = index_node.modPow = modPow; var toZn_1 = index_node.toZn = toZn; function fromBuffer(buf) { let ret = 0n; for (const i of buf.values()) { const bi = BigInt(i); ret = (ret << 8n) + bi; } return ret; } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues() * * @param byteLength - The desired number of random bytes * @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} * byteLength MUST be > 0 * * @returns A promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes */ function randBytes(byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError('byteLength MUST be > 0'); return new Promise(function (resolve, reject) { { const crypto = require('crypto'); // eslint-disable-line crypto.randomBytes(byteLength, function (err, buf) { /* istanbul ignore if */ if (err !== null) reject(err); // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128; resolve(buf); }); } }); } /** * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param byteLength - The desired number of random bytes * @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 * * @throws {RangeError} * byteLength MUST be > 0 * * @returns A UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes */ function randBytesSync(byteLength, forceLength = false) { if (byteLength < 1) throw new RangeError('byteLength MUST be > 0'); /* eslint-disable no-lone-blocks */ { // node const crypto = require('crypto'); // eslint-disable-line const buf = crypto.randomBytes(byteLength); // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength if (forceLength) buf[0] = buf[0] | 128; return buf; } /* eslint-enable no-lone-blocks */ } /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * * @param bitLength - The desired number of random bits * @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} * bitLength MUST be > 0 * * @returns A Promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits */ function randBits(bitLength, forceLength = false) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0'); const byteLength = Math.ceil(bitLength / 8); const bitLengthMod8 = bitLength % 8; return new Promise((resolve, reject) => { randBytes(byteLength, false).then(function (rndBytes) { if (bitLengthMod8 !== 0) { // Fill with 0's the extra bits rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1); } if (forceLength) { const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128; rndBytes[0] = rndBytes[0] | mask; } resolve(rndBytes); }); }); } /** * Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues() * @param bitLength - The desired number of random bits * @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1 * * @throws {RangeError} * bitLength MUST be > 0 * * @returns A Uint8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits */ function randBitsSync(bitLength, forceLength = false) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0'); const byteLength = Math.ceil(bitLength / 8); const rndBytes = randBytesSync(byteLength, false); const bitLengthMod8 = bitLength % 8; if (bitLengthMod8 !== 0) { // Fill with 0's the extra bits rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1); } if (forceLength) { const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128; rndBytes[0] = rndBytes[0] | mask; } return rndBytes; } /** * Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0 * @param max Returned value will be <= max * @param min Returned value will be >= min * * @throws {RangeError} * Arguments MUST be: max > 0 && min >=0 && max > min * * @returns A cryptographically secure random bigint between [min,max] */ function randBetween(max, min = 1n) { if (max <= 0n || min < 0n || max <= min) throw new RangeError('Arguments MUST be: max > 0 && min >=0 && max > min'); const interval = max - min; const bitLen = bitLength_1(interval); let rnd; do { const buf = randBitsSync(bitLen); rnd = fromBuffer(buf); } while (rnd > interval); return rnd + min; } let _useWorkers = false; // The following is just to check whether we can use workers /* eslint-disable no-lone-blocks */ { // Node.js try { require.resolve('worker_threads'); _useWorkers = true; } catch (e) { /* istanbul ignore next */ console.log(`[bigint-crypto-utils] WARNING: This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers. · With Node >=11 it is enabled by default (consider upgrading). · With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `); } } /** * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several * iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1) * * @param w - A positive integer to be tested for primality * @param iterations - The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 * @param disableWorkers - Disable the use of workers for the primality test * * @throws {RangeError} * w MUST be >= 0 * * @returns A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite) */ function isProbablyPrime(w, iterations = 16, disableWorkers = false) { if (typeof w === 'number') { w = BigInt(w); } if (w < 0n) throw RangeError('w MUST be >= 0'); { // Node.js /* istanbul ignore else */ if (!disableWorkers && _useWorkers) { const { Worker } = require('worker_threads'); // eslint-disable-line return new Promise((resolve, reject) => { const worker = new Worker(__filename); worker.on('message', (data) => { worker.terminate(); resolve(data.isPrime); }); worker.on('error', reject); const msg = { rnd: w, iterations: iterations, id: 0 }; worker.postMessage(msg); }); } else { return new Promise((resolve) => { resolve(_isProbablyPrime(w, iterations)); }); } } } function _isProbablyPrime(w, iterations) { /* PREFILTERING. Even values but 2 are not primes, so don't test. 1 is not a prime and the M-R algorithm needs w>1. */ if (w === 2n) return true; else if ((w & 1n) === 0n || w === 1n) return false; /* Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above. */ const firstPrimes = [ 3n, 5n, 7n, 11n, 13n, 17n, 19n, 23n, 29n, 31n, 37n, 41n, 43n, 47n, 53n, 59n, 61n, 67n, 71n, 73n, 79n, 83n, 89n, 97n, 101n, 103n, 107n, 109n, 113n, 127n, 131n, 137n, 139n, 149n, 151n, 157n, 163n, 167n, 173n, 179n, 181n, 191n, 193n, 197n, 199n, 211n, 223n, 227n, 229n, 233n, 239n, 241n, 251n, 257n, 263n, 269n, 271n, 277n, 281n, 283n, 293n, 307n, 311n, 313n, 317n, 331n, 337n, 347n, 349n, 353n, 359n, 367n, 373n, 379n, 383n, 389n, 397n, 401n, 409n, 419n, 421n, 431n, 433n, 439n, 443n, 449n, 457n, 461n, 463n, 467n, 479n, 487n, 491n, 499n, 503n, 509n, 521n, 523n, 541n, 547n, 557n, 563n, 569n, 571n, 577n, 587n, 593n, 599n, 601n, 607n, 613n, 617n, 619n, 631n, 641n, 643n, 647n, 653n, 659n, 661n, 673n, 677n, 683n, 691n, 701n, 709n, 719n, 727n, 733n, 739n, 743n, 751n, 757n, 761n, 769n, 773n, 787n, 797n, 809n, 811n, 821n, 823n, 827n, 829n, 839n, 853n, 857n, 859n, 863n, 877n, 881n, 883n, 887n, 907n, 911n, 919n, 929n, 937n, 941n, 947n, 953n, 967n, 971n, 977n, 983n, 991n, 997n, 1009n, 1013n, 1019n, 1021n, 1031n, 1033n, 1039n, 1049n, 1051n, 1061n, 1063n, 1069n, 1087n, 1091n, 1093n, 1097n, 1103n, 1109n, 1117n, 1123n, 1129n, 1151n, 1153n, 1163n, 1171n, 1181n, 1187n, 1193n, 1201n, 1213n, 1217n, 1223n, 1229n, 1231n, 1237n, 1249n, 1259n, 1277n, 1279n, 1283n, 1289n, 1291n, 1297n, 1301n, 1303n, 1307n, 1319n, 1321n, 1327n, 1361n, 1367n, 1373n, 1381n, 1399n, 1409n, 1423n, 1427n, 1429n, 1433n, 1439n, 1447n, 1451n, 1453n, 1459n, 1471n, 1481n, 1483n, 1487n, 1489n, 1493n, 1499n, 1511n, 1523n, 1531n, 1543n, 1549n, 1553n, 1559n, 1567n, 1571n, 1579n, 1583n, 1597n ]; for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) { const p = firstPrimes[i]; if (w === p) return true; else if (w % p === 0n) return false; } /* 1. Let a be the largest integer such that 2**a divides w−1. 2. m = (w−1) / 2**a. 3. wlen = len (w). 4. For i = 1 to iterations do 4.1 Obtain a string b of wlen bits from an RBG. Comment: Ensure that 1 < b < w−1. 4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1. 4.3 z = b**m mod w. 4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7. 4.5 For j = 1 to a − 1 do. 4.5.1 z = z**2 mod w. 4.5.2 If (z = w−1), then go to step 4.7. 4.5.3 If (z = 1), then go to step 4.6. 4.6 Return COMPOSITE. 4.7 Continue. Comment: Increment i for the do-loop in step 4. 5. Return PROBABLY PRIME. */ let a = 0n; const d = w - 1n; let aux = d; while (aux % 2n === 0n) { aux /= 2n; ++a; } const m = d / (2n ** a); do { const b = randBetween(d, 2n); let z = modPow_1(b, m, w); if (z === 1n || z === d) continue; let j = 1; while (j < a) { z = modPow_1(z, 2n, w); if (z === d) break; if (z === 1n) return false; j++; } if (z !== d) return false; } while (--iterations !== 0); return true; } if (_useWorkers) { // node.js with support for workers const { parentPort, isMainThread } = require('worker_threads'); // eslint-disable-line const isWorker = !isMainThread; /* istanbul ignore if */ if (isWorker) { // worker parentPort.on('message', function (data) { const isPrime = _isProbablyPrime(data.rnd, data.iterations); const msg = { isPrime: isPrime, value: data.rnd, id: data.id }; parentPort.postMessage(msg); }); } } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI * main process, and it can be much faster (if several cores or cpu are available). * The node version can also use worker_threads if they are available (enabled by default with Node 11 and * and can be enabled at runtime executing node --experimental-worker with node >=10.5.0). * * @param bitLength - The required bit length for the generated prime * @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} * bitLength MUST be > 0 * * @returns A promise that resolves to a bigint probable prime of bitLength bits. */ function prime(bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0'); /* istanbul ignore if */ if (!_useWorkers) { // If there is no support for workers let rnd = 0n; do { rnd = fromBuffer(randBitsSync(bitLength, true)); } while (!_isProbablyPrime(rnd, iterations)); return new Promise((resolve) => { resolve(rnd); }); } return new Promise((resolve, reject) => { const workerList = []; const _onmessage = (msg, newWorker) => { if (msg.isPrime) { // if a prime number has been found, stop all the workers, and return it for (let j = 0; j < workerList.length; j++) { workerList[j].terminate(); } while (workerList.length > 0) { workerList.pop(); } resolve(msg.value); } else { // if a composite is found, make the worker test another random number const buf = randBitsSync(bitLength, true); const rnd = fromBuffer(buf); try { const msgToWorker = { rnd: rnd, iterations: iterations, id: msg.id }; newWorker.postMessage(msgToWorker); } catch (error) { // The worker has already terminated. There is nothing to handle here } } }; { // Node.js const { cpus } = require('os'); // eslint-disable-line const { Worker } = require('worker_threads'); // eslint-disable-line for (let i = 0; i < cpus().length - 1; i++) { const newWorker = new Worker(__filename); newWorker.on('message', (msg) => _onmessage(msg, newWorker)); workerList.push(newWorker); } } for (let i = 0; i < workerList.length; i++) { randBits(bitLength, true).then(function (buf) { const rnd = fromBuffer(buf); workerList[i].postMessage({ rnd: rnd, iterations: iterations, id: i }); }).catch(reject); } }); } /** * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator. * The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead. * * @param bitLength - The required bit length for the generated prime * @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test * * @throws {RangeError} * bitLength MUST be > 0 * * @returns A bigint probable prime of bitLength bits. */ function primeSync(bitLength, iterations = 16) { if (bitLength < 1) throw new RangeError('bitLength MUST be > 0'); let rnd = 0n; do { rnd = fromBuffer(randBitsSync(bitLength, true)); } while (!_isProbablyPrime(rnd, iterations)); return rnd; } exports.abs = abs_1; exports.bitLength = bitLength_1; exports.eGcd = eGcd_1; exports.gcd = gcd_1; exports.isProbablyPrime = isProbablyPrime; exports.lcm = lcm_1; exports.max = max_1; exports.min = min_1; exports.modInv = modInv_1; exports.modPow = modPow_1; exports.prime = prime; exports.primeSync = primeSync; exports.randBetween = randBetween; exports.randBits = randBits; exports.randBitsSync = randBitsSync; exports.randBytes = randBytes; exports.randBytesSync = randBytesSync; exports.toZn = toZn_1; //# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXgubm9kZS5qcyIsInNvdXJjZXMiOlsiLi4vLi4vbm9kZV9tb2R1bGVzL2JpZ2ludC1tb2QtYXJpdGgvZGlzdC9janMvaW5kZXgubm9kZS5janMiLCIuLi8uLi9zcmMvdHMvZnJvbUJ1ZmZlci50cyIsIi4uLy4uL3NyYy90cy9yYW5kQnl0ZXMudHMiLCIuLi8uLi9zcmMvdHMvcmFuZEJpdHMudHMiLCIuLi8uLi9zcmMvdHMvcmFuZEJldHdlZW4udHMiLCIuLi8uLi9zcmMvdHMvd29ya2VyVXRpbHMudHMiLCIuLi8uLi9zcmMvdHMvaXNQcm9iYWJseVByaW1lLnRzIiwiLi4vLi4vc3JjL3RzL3ByaW1lLnRzIl0sInNvdXJjZXNDb250ZW50IjpudWxsLCJuYW1lcyI6WyJiaXRMZW5ndGgiLCJtb2RQb3ciXSwibWFwcGluZ3MiOiI7Ozs7OztBQUVBLE1BQU0sQ0FBQyxjQUFjLENBQUMsVUFBTyxFQUFFLFlBQVksRUFBRSxFQUFFLEtBQUssRUFBRSxJQUFJLEVBQUUsQ0FBQyxDQUFDO0FBQzlEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLEdBQUcsQ0FBQyxDQUFDLEVBQUU7QUFDaEIsSUFBSSxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUM7QUFDN0IsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxTQUFTLENBQUMsQ0FBQyxFQUFFO0FBQ3RCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksQ0FBQyxLQUFLLEVBQUUsRUFBRTtBQUNsQixRQUFRLE9BQU8sQ0FBQyxDQUFDO0FBQ2pCLEtBQUs7QUFDTCxJQUFJLElBQUksSUFBSSxHQUFHLENBQUMsQ0FBQztBQUNqQixJQUFJLEdBQUc7QUFDUCxRQUFRLElBQUksRUFBRSxDQUFDO0FBQ2YsS0FBSyxRQUFRLENBQUMsQ0FBQyxLQUFLLEVBQUUsSUFBSSxFQUFFLEVBQUU7QUFDOUIsSUFBSSxPQUFPLElBQUksQ0FBQztBQUNoQixDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ3BCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLENBQUMsSUFBSSxFQUFFLElBQUksQ0FBQyxJQUFJLEVBQUU7QUFDMUIsUUFBUSxNQUFNLElBQUksVUFBVSxDQUFDLHFCQUFxQixDQUFDLENBQUM7QUFDcEQsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDZixJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNmLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO0FBQ2YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDZixJQUFJLE9BQU8sQ0FBQyxLQUFLLEVBQUUsRUFBRTtBQUNyQixRQUFRLE1BQU0sQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDeEIsUUFBUSxNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ3hCLFFBQVEsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQztBQUM5QixRQUFRLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUM7QUFDOUIsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsUUFBUSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ2QsS0FBSztBQUNMLElBQUksT0FBTztBQUNYLFFBQVEsQ0FBQyxFQUFFLENBQUM7QUFDWixRQUFRLENBQUMsRUFBRSxDQUFDO0FBQ1osUUFBUSxDQUFDLEVBQUUsQ0FBQztBQUNaLEtBQUssQ0FBQztBQUNOLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ25CLElBQUksSUFBSSxJQUFJLEdBQUcsQ0FBQyxPQUFPLENBQUMsS0FBSyxRQUFRLElBQUksTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUNqRSxJQUFJLElBQUksSUFBSSxHQUFHLENBQUMsT0FBTyxDQUFDLEtBQUssUUFBUSxJQUFJLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDakUsSUFBSSxJQUFJLElBQUksS0FBSyxFQUFFLEVBQUU7QUFDckIsUUFBUSxPQUFPLElBQUksQ0FBQztBQUNwQixLQUFLO0FBQ0wsU0FBUyxJQUFJLElBQUksS0FBSyxFQUFFLEVBQUU7QUFDMUIsUUFBUSxPQUFPLElBQUksQ0FBQztBQUNwQixLQUFLO0FBQ0wsSUFBSSxJQUFJLEtBQUssR0FBRyxFQUFFLENBQUM7QUFDbkIsSUFBSSxPQUFPLENBQUMsQ0FBQyxJQUFJLEdBQUcsSUFBSSxJQUFJLEVBQUUsTUFBTSxFQUFFLEVBQUU7QUFDeEMsUUFBUSxJQUFJLEtBQUssRUFBRSxDQUFDO0FBQ3BCLFFBQVEsSUFBSSxLQUFLLEVBQUUsQ0FBQztBQUNwQixRQUFRLEtBQUssRUFBRSxDQUFDO0FBQ2hCLEtBQUs7QUFDTCxJQUFJLE9BQU8sQ0FBQyxJQUFJLEdBQUcsRUFBRSxNQUFNLEVBQUU7QUFDN0IsUUFBUSxJQUFJLEtBQUssRUFBRSxDQUFDO0FBQ3BCLElBQUksR0FBRztBQUNQLFFBQVEsT0FBTyxDQUFDLElBQUksR0FBRyxFQUFFLE1BQU0sRUFBRTtBQUNqQyxZQUFZLElBQUksS0FBSyxFQUFFLENBQUM7QUFDeEIsUUFBUSxJQUFJLElBQUksR0FBRyxJQUFJLEVBQUU7QUFDekIsWUFBWSxNQUFNLENBQUMsR0FBRyxJQUFJLENBQUM7QUFDM0IsWUFBWSxJQUFJLEdBQUcsSUFBSSxDQUFDO0FBQ3hCLFlBQVksSUFBSSxHQUFHLENBQUMsQ0FBQztBQUNyQixTQUFTO0FBQ1QsUUFBUSxJQUFJLElBQUksSUFBSSxDQUFDO0FBQ3JCLEtBQUssUUFBUSxJQUFJLEtBQUssRUFBRSxFQUFFO0FBQzFCO0FBQ0EsSUFBSSxPQUFPLElBQUksSUFBSSxLQUFLLENBQUM7QUFDekIsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLEdBQUcsQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ25CLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLENBQUMsS0FBSyxFQUFFLElBQUksQ0FBQyxLQUFLLEVBQUU7QUFDNUIsUUFBUSxPQUFPLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN6QjtBQUNBLElBQUksT0FBTyxHQUFHLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsSUFBSSxDQUFDLENBQUMsQ0FBQztBQUNwQyxDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUNuQixJQUFJLE9BQU8sQ0FBQyxDQUFDLElBQUksQ0FBQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDNUIsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsR0FBRyxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUU7QUFDbkIsSUFBSSxPQUFPLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQzVCLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQSxTQUFTLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ3BCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLENBQUMsSUFBSSxFQUFFLEVBQUU7QUFDakIsUUFBUSxNQUFNLElBQUksVUFBVSxDQUFDLGVBQWUsQ0FBQyxDQUFDO0FBQzlDLEtBQUs7QUFDTCxJQUFJLE1BQU0sR0FBRyxHQUFHLENBQUMsR0FBRyxDQUFDLENBQUM7QUFDdEIsSUFBSSxPQUFPLENBQUMsR0FBRyxHQUFHLEVBQUUsSUFBSSxHQUFHLEdBQUcsQ0FBQyxHQUFHLEdBQUcsQ0FBQztBQUN0QyxDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxNQUFNLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUN0QixJQUFJLE1BQU0sSUFBSSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0FBQ3JDLElBQUksSUFBSSxJQUFJLENBQUMsQ0FBQyxLQUFLLEVBQUUsRUFBRTtBQUN2QixRQUFRLE1BQU0sSUFBSSxVQUFVLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxRQUFRLEVBQUUsQ0FBQyw4QkFBOEIsRUFBRSxDQUFDLENBQUMsUUFBUSxFQUFFLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDN0YsS0FBSztBQUNMLFNBQVM7QUFDVCxRQUFRLE9BQU8sSUFBSSxDQUFDLElBQUksQ0FBQyxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUM7QUFDL0IsS0FBSztBQUNMLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsTUFBTSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxFQUFFO0FBQ3pCLElBQUksSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRO0FBQzdCLFFBQVEsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQztBQUN0QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxFQUFFO0FBQ2pCLFFBQVEsTUFBTSxJQUFJLFVBQVUsQ0FBQyxlQUFlLENBQUMsQ0FBQztBQUM5QyxLQUFLO0FBQ0wsU0FBUyxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDdkIsUUFBUSxPQUFPLEVBQUUsQ0FBQztBQUNsQixLQUFLO0FBQ0wsSUFBSSxDQUFDLEdBQUcsSUFBSSxDQUFDLENBQUMsRUFBRSxDQUFDLENBQUMsQ0FBQztBQUNuQixJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsRUFBRTtBQUNoQixRQUFRLE9BQU8sTUFBTSxDQUFDLE1BQU0sQ0FBQyxDQUFDLEVBQUUsR0FBRyxDQUFDLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxFQUFFLENBQUMsQ0FBQyxDQUFDO0FBQy9DLEtBQUs7QUFDTCxJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNmLElBQUksT0FBTyxDQUFDLEdBQUcsQ0FBQyxFQUFFO0FBQ2xCLFFBQVEsSUFBSSxDQUFDLENBQUMsR0FBRyxFQUFFLE1BQU0sRUFBRSxFQUFFO0FBQzdCLFlBQVksQ0FBQyxHQUFHLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQzFCLFNBQVM7QUFDVCxRQUFRLENBQUMsR0FBRyxDQUFDLEdBQUcsRUFBRSxDQUFDO0FBQ25CLFFBQVEsQ0FBQyxHQUFHLENBQUMsSUFBSSxFQUFFLEdBQUcsQ0FBQyxDQUFDO0FBQ3hCLEtBQUs7QUFDTCxJQUFJLE9BQU8sQ0FBQyxDQUFDO0FBQ2IsQ0FBQztBQUNEOzBCQUNXLEdBQUcsSUFBSTtzQ0FDRCxHQUFHLFVBQVU7NEJBQ2xCLEdBQUcsS0FBSzswQkFDVCxHQUFHLElBQUk7MEJBQ1AsR0FBRyxJQUFJOzBCQUNQLEdBQUcsSUFBSTswQkFDUCxHQUFHLElBQUk7Z0NBQ0osR0FBRyxPQUFPO2dDQUNWLEdBQUcsT0FBTzs0QkFDWixHQUFHOztTQzdQQyxVQUFVLENBQUUsR0FBc0I7SUFDaEQsSUFBSSxHQUFHLEdBQUcsRUFBRSxDQUFBO0lBQ1osS0FBSyxNQUFNLENBQUMsSUFBSSxHQUFHLENBQUMsTUFBTSxFQUFFLEVBQUU7UUFDNUIsTUFBTSxFQUFFLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFBO1FBQ3BCLEdBQUcsR0FBRyxDQUFDLEdBQUcsSUFBSSxFQUFFLElBQUksRUFBRSxDQUFBO0tBQ3ZCO0lBQ0QsT0FBTyxHQUFHLENBQUE7QUFDWjs7QUNQQTs7Ozs7Ozs7Ozs7U0FXZ0IsU0FBUyxDQUFFLFVBQWtCLEVBQUUsV0FBVyxHQUFHLEtBQUs7SUFDaEUsSUFBSSxVQUFVLEdBQUcsQ0FBQztRQUFFLE1BQU0sSUFBSSxVQUFVLENBQUMsd0JBQXdCLENBQUMsQ0FBQTtJQUVsRSxPQUFPLElBQUksT0FBTyxDQUFDLFVBQVUsT0FBTyxFQUFFLE1BQU07UUFDekI7WUFDZixNQUFNLE1BQU0sR0FBRyxPQUFPLENBQUMsUUFBUSxDQUFDLENBQUE7WUFDaEMsTUFBTSxDQUFDLFdBQVcsQ0FBQyxVQUFVLEVBQUUsVUFBVSxHQUFVLEVBQUUsR0FBVzs7Z0JBRTlELElBQUksR0FBRyxLQUFLLElBQUk7b0JBQUUsTUFBTSxDQUFDLEdBQUcsQ0FBQyxDQUFBOztnQkFFN0IsSUFBSSxXQUFXO29CQUFFLEdBQUcsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFBO2dCQUN0QyxPQUFPLENBQUMsR0FBRyxDQUFDLENBQUE7YUFDYixDQUFDLENBQUE7U0FPSDtLQUNGLENBQUMsQ0FBQTtBQUNKLENBQUM7QUFFRDs7Ozs7Ozs7Ozs7U0FXZ0IsYUFBYSxDQUFFLFVBQWtCLEVBQUUsY0FBdUIsS0FBSztJQUM3RSxJQUFJLFVBQVUsR0FBRyxDQUFDO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyx3QkFBd0IsQ0FBQyxDQUFBOztJQUdqRDtRQUNmLE1BQU0sTUFBTSxHQUFHLE9BQU8sQ0FBQyxRQUFRLENBQUMsQ0FBQTtRQUNoQyxNQUFNLEdBQUcsR0FBRyxNQUFNLENBQUMsV0FBVyxDQUFDLFVBQVUsQ0FBQyxDQUFBOztRQUUxQyxJQUFJLFdBQVc7WUFBRSxHQUFHLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBQyxHQUFHLEdBQUcsQ0FBQTtRQUN0QyxPQUFPLEdBQUcsQ0FBQTtLQU9YOztBQUVIOztBQzdEQTs7Ozs7Ozs7Ozs7U0FXZ0IsUUFBUSxDQUFFLFNBQWlCLEVBQUUsY0FBdUIsS0FBSztJQUN2RSxJQUFJLFNBQVMsR0FBRyxDQUFDO1FBQUUsTUFBTSxJQUFJLFVBQVUsQ0FBQyx1QkFBdUIsQ0FBQyxDQUFBO0lBRWhFLE1BQU0sVUFBVSxHQUFHLElBQUksQ0FBQyxJQUFJLENBQUMsU0FBUyxHQUFHLENBQUMsQ0FBQyxDQUFBO0lBQzNDLE1BQU0sYUFBYSxHQUFHLFNBQVMsR0FBRyxDQUFDLENBQUE7SUFFbkMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxDQUFDLE9BQU8sRUFBRSxNQUFNO1FBQ2pDLFNBQVMsQ0FBQyxVQUFVLEVBQUUsS0FBSyxDQUFDLENBQUMsSUFBSSxDQUFDLFVBQVUsUUFBUTtZQUNsRCxJQUFJLGFBQWEsS0FBSyxDQUFDLEVBQUU7O2dCQUV2QixRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsUUFBUSxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsSUFBSSxhQUFhLEdBQUcsQ0FBQyxDQUFDLENBQUE7YUFDckQ7WUFDRCxJQUFJLFdBQVcsRUFBRTtnQkFDZixNQUFNLElBQUksR0FBRyxDQUFDLGFBQWEsS0FBSyxDQUFDLElBQUksQ0FBQyxLQUFLLGFBQWEsR0FBRyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUE7Z0JBQ25FLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxRQUFRLENBQUMsQ0FBQyxDQUFDLEdBQUcsSUFBSSxDQUFBO2FBQ2pDO1lBQ0QsT0FBTyxDQUFDLFFBQVEsQ0FBQyxDQUFBO1NBQ2xCLENBQUMsQ0FBQTtLQUNILENBQUMsQ0FBQTtBQUNKLENBQUM7QUFFRDs7Ozs7Ozs7OztTQVVnQixZQUFZLENBQUUsU0FBaUIsRUFBRSxjQUF1QixLQUFLO0lBQzNFLElBQUksU0FBUyxHQUFHLENBQUM7UUFBRSxNQUFNLElBQUksVUFBVSxDQUFDLHVCQUF1QixDQUFDLENBQUE7SUFFaEUsTUFBTSxVQUFVLEdBQUcsSUFBSSxDQUFDLElBQUksQ0FBQyxTQUFTLEdBQUcsQ0FBQyxDQUFDLENBQUE7SUFDM0MsTUFBTSxRQUFRLEdBQUcsYUFBYSxDQUFDLFVBQVUsRUFBRSxLQUFLLENBQUMsQ0FBQTtJQUNqRCxNQUFNLGFBQWEsR0FBRyxTQUFTLEdBQUcsQ0FBQyxDQUFBO0lBQ25DLElBQUksYUFBYSxLQUFLLENBQUMsRUFBRTs7UUFFdkIsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksYUFBYSxHQUFHLENBQUMsQ0FBQyxDQUFBO0tBQ3JEO0lBQ0QsSUFBSSxXQUFXLEVBQUU7UUFDZixNQUFNLElBQUksR0FBRyxDQUFDLGFBQWEsS0FBSyxDQUFDLElBQUksQ0FBQyxLQUFLLGFBQWEsR0FBRyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUE7UUFDbkUsUUFBUSxDQUFDLENBQUMsQ0FBQyxHQUFHLFFBQVEsQ0FBQyxDQUFDLENBQUMsR0FBRyxJQUFJLENBQUE7S0FDakM7SUFDRCxPQUFPLFFBQVEsQ0FBQTtBQUNqQjs7QUN2REE7Ozs7Ozs7Ozs7U0FVZ0IsV0FBVyxDQUFFLEdBQVcsRUFBRSxNQUFjLEVBQUU7SUFDeEQsSUFBSSxHQUFHLElBQUksRUFBRSxJQUFJLEdBQUcsR0FBRyxFQUFFLElBQUksR0FBRyxJQUFJLEdBQUc7UUFBRSxNQUFNLElBQUksVUFBVSxDQUFDLG9EQUFvRCxDQUFDLENBQUE7SUFDbkgsTUFBTSxRQUFRLEdBQUcsR0FBRyxHQUFHLEdBQUcsQ0FBQTtJQUMxQixNQUFNLE1BQU0sR0FBR0EsV0FBUyxDQUFDLFFBQVEsQ0FBQyxDQUFBO0lBQ2xDLElBQUksR0FBRyxDQUFBO0lBQ1AsR0FBRztRQUNELE1BQU0sR0FBRyxHQUFHLFlBQVksQ0FBQyxNQUFNLENBQUMsQ0FBQTtRQUNoQyxHQUFHLEdBQUcsVUFBVSxDQUFDLEdBQUcsQ0FBQyxDQUFBO0tBQ3RCLFFBQVEsR0FBRyxHQUFHLFFBQVEsRUFBQztJQUN4QixPQUFPLEdBQUcsR0FBRyxHQUFHLENBQUE7QUFDbEI7O0FDbEJBLElBQUksV0FBVyxHQUFHLEtBQUssQ0FBQTtBQUN2QjtBQUNpQjtJQUNmLElBQUk7UUFDRixPQUFPLENBQUMsT0FBTyxDQUFDLGdCQUFnQixDQUFDLENBQUE7UUFDakMsV0FBVyxHQUFHLElBQUksQ0FBQTtLQUNuQjtJQUFDLE9BQU8sQ0FBQyxFQUFFOztRQUVWLE9BQU8sQ0FBQyxHQUFHLENBQUM7Ozt1SEFHdUcsQ0FBQyxDQUFBO0tBQ3JIOzs7QUNYSDs7Ozs7Ozs7Ozs7OztTQWFnQixlQUFlLENBQUUsQ0FBZ0IsRUFBRSxhQUFxQixFQUFFLEVBQUUsaUJBQTBCLEtBQUs7SUFDekcsSUFBSSxPQUFPLENBQUMsS0FBSyxRQUFRLEVBQUU7UUFDekIsQ0FBQyxHQUFHLE1BQU0sQ0FBQyxDQUFDLENBQUMsQ0FBQTtLQUNkO0lBQ0QsSUFBSSxDQUFDLEdBQUcsRUFBRTtRQUFFLE1BQU0sVUFBVSxDQUFDLGdCQUFnQixDQUFDLENBQUE7SUFFN0I7O1FBRWYsSUFBSSxDQUFDLGNBQWMsSUFBSSxXQUFXLEVBQUU7WUFDbEMsTUFBTSxFQUFFLE1BQU0sRUFBRSxHQUFHLE9BQU8sQ0FBQyxnQkFBZ0IsQ0FBQyxDQUFBO1lBQzVDLE9BQU8sSUFBSSxPQUFPLENBQUMsQ0FBQyxPQUFPLEVBQUUsTUFBTTtnQkFDakMsTUFBTSxNQUFNLEdBQUcsSUFBSSxNQUFNLENBQUMsVUFBVSxDQUFDLENBQUE7Z0JBRXJDLE1BQU0sQ0FBQyxFQUFFLENBQUMsU0FBUyxFQUFFLENBQUMsSUFBcUI7b0JBQ3pDLE1BQU0sQ0FBQyxTQUFTLEVBQUUsQ0FBQTtvQkFDbEIsT0FBTyxDQUFDLElBQUksQ0FBQyxPQUFPLENBQUMsQ0FBQTtpQkFDdEIsQ0FBQyxDQUFBO2dCQUVGLE1BQU0sQ0FBQyxFQUFFLENBQUMsT0FBTyxFQUFFLE1BQU0sQ0FBQyxDQUFBO2dCQUUxQixNQUFNLEdBQUcsR0FBb0I7b0JBQzNCLEdBQUcsRUFBRSxDQUFXO29CQUNoQixVQUFVLEVBQUUsVUFBVTtvQkFDdEIsRUFBRSxFQUFFLENBQUM7aUJBQ04sQ0FBQTtnQkFDRCxNQUFNLENBQUMsV0FBVyxDQUFDLEdBQUcsQ0FBQyxDQUFBO2FBQ3hCLENBQUMsQ0FBQTtTQUNIO2FBQU07WUFDTCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsT0FBTztnQkFDekIsT0FBTyxDQUFDLGdCQUFnQixDQUFDLENBQVcsRUFBRSxVQUFVLENBQUMsQ0FBQyxDQUFBO2FBQ25ELENBQUMsQ0FBQTtTQUNIO0tBcUJGO0FBQ0gsQ0FBQztTQUVlLGdCQUFnQixDQUFFLENBQVMsRUFBRSxVQUFrQjs7Ozs7SUFLN0QsSUFBSSxDQUFDLEtBQUssRUFBRTtRQUFFLE9BQU8sSUFBSSxDQUFBO1NBQ3BCLElBQUksQ0FBQyxDQUFDLEdBQUcsRUFBRSxNQUFNLEVBQUUsSUFBSSxDQUFDLEtBQUssRUFBRTtRQUFFLE9BQU8sS0FBSyxDQUFBOzs7O0lBS2xELE1BQU0sV0FBVyxHQUFHO1FBQ2xCLEVBQUU7UUFDRixFQUFFO1FBQ0YsRUFBRTtRQUNGLEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILEdBQUc7UUFDSCxHQUFHO1FBQ0gsR0FBRztRQUNILElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osSUFBSTtRQUNKLElBQUk7UUFDSixJQUFJO1FBQ0osS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7UUFDTCxLQUFLO1FBQ0wsS0FBSztRQUNMLEtBQUs7S0FDTixDQUFBO0lBRUQsS0FBSyxJQUFJLENBQUMsR0FBRyxDQUFDLEVBQUUsQ0FBQyxHQUFHLFdBQVcsQ0FBQyxNQUFNLEtBQUssV0FBVyxDQUFDLENBQUMsQ0FBQyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRSxFQUFFO1FBQ3BFLE1BQU0sQ0FBQyxHQUFHLFdBQVcsQ0FBQyxDQUFDLENBQUMsQ0FBQTtRQUN4QixJQUFJLENBQUMsS0FBSyxDQUFDO1lBQUUsT0FBTyxJQUFJLENBQUE7YUFDbkIsSUFBSSxDQUFDLEdBQUcsQ0FBQyxLQUFLLEVBQUU7WUFBRSxPQUFPLEtBQUssQ0FBQTtLQUNwQzs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7SUFxQkQsSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFBO0lBQ1YsTUFBTSxDQUFDLEdBQUcsQ0FBQyxHQUFHLEVBQUUsQ0FBQTtJQUNoQixJQUFJLEdBQUcsR0FBRyxDQUFDLENBQUE7SUFDWCxPQUFPLEdBQUcsR0FBRyxFQUFFLEtBQUssRUFBRSxFQUFFO1FBQ3RCLEdBQUcsSUFBSSxFQUFFLENBQUE7UUFDVCxFQUFFLENBQUMsQ0FBQTtLQUNKO0lBRUQsTUFBTSxDQUFDLEdBQUcsQ0FBQyxJQUFJLEVBQUUsSUFBSSxDQUFDLENBQUMsQ0FBQTtJQUV2QixHQUFHO1FBQ0QsTUFBTSxDQUFDLEdBQUcsV0FBVyxDQUFDLENBQUMsRUFBRSxFQUFFLENBQUMsQ0FBQTtRQUM1QixJQUFJLENBQUMsR0FBR0MsUUFBTSxDQUFDLENBQUMsRUFBRSxDQUFDLEVBQUUsQ0FBQyxDQUFDLENBQUE7UUFDdkIsSUFBSSxDQUFDLEtBQUssRUFBRSxJQUFJLENBQUMsS0FBSyxDQUFDO1lBQUUsU0FBUTtRQUNqQyxJQUFJLENBQUMsR0FBRyxDQUFDLENBQUE7UUFDVCxPQUFPLENBQUMsR0FBRyxDQUFDLEVBQUU7WUFDWixDQUFDLEdBQUdBLFFBQU0sQ0FBQyxDQUFDLEVBQUUsRUFBRSxFQUFFLENBQUMsQ0FBQyxDQUFBO1lBQ3BCLElBQUksQ0FBQyxLQUFLLENBQUM7Z0JBQUUsTUFBSztZQUNsQixJQUFJLENBQUMsS0FBSyxFQUFFO2dCQUFFLE9BQU8sS0FBSyxDQUFBO1lBQzFCLENBQUMsRUFBRSxDQUFBO1NBQ0o7UUFDRCxJQUFJLENBQUMsS0FBSyxDQUFDO1lBQUUsT0FBTyxLQUFLLENBQUE7S0FDMUIsUUFBUSxFQUFFLFVBQVUsS0FBSyxDQUFDLEVBQUM7SUFFNUIsT0FBTyxJQUFJLENBQUE7QUFDYixDQUFDO0FBV0QsSUFBbUIsV0FBVyxFQUFFO0lBQzlCLE1BQU0sRUFBRSxVQUFVLEVBQUUsWUFBWSxFQUFFLEdBQUcsT0FBTyxDQUFDLGdCQUFnQixDQUFDLENBQUE7SUFDOUQsTUFBTSxRQUFRLEdBQUcsQ0FBRSxZQUF3QixDQUFBOztJQUUzQyxJQUFJLFFBQVEsRUFBRTtRQUNaLFVBQVUsQ0FBQyxFQUFFLENBQUMsU0FBUyxFQUFFLFVBQVUsSUFBcUI7WUFDdEQsTUFBTSxPQUFPLEdBQUcsZ0JBQWdCLENBQUMsSUFBSSxDQUFDLEdBQUcsRUFBRSxJQUFJLENBQUMsVUFBVSxDQUFDLENBQUE7WUFDM0QsTUFBTSxHQUFHLEdBQW9CO2dCQUMzQixPQUFPLEVBQUUsT0FBTztnQkFDaEIsS0FBSyxFQUFFLElBQUksQ0FBQyxHQUFHO2dCQUNmLEVBQUUsRUFBRSxJQUFJLENBQUMsRUFBRTthQUNaLENBQUE7WUFDRCxVQUFVLENBQUMsV0FBVyxDQUFDLEdBQUcsQ0FBQyxDQUFBO1NBQzVCLENBQUMsQ0FBQTtLQUNIOzs7QUN6Wkg7Ozs7Ozs7Ozs7Ozs7OztTQWVnQixLQUFLLENBQUUsU0FBaUIsRUFBRSxhQUFxQixFQUFFO0lBQy9ELElBQUksU0FBUyxHQUFHLENBQUM7UUFBRSxNQUFNLElBQUksVUFBVSxDQUFDLHVCQUF1QixDQUFDLENBQUE7O0lBR2hFLElBQUksQ0FBQyxXQUFXLEVBQUU7UUFDaEIsSUFBSSxHQUFHLEdBQUcsRUFBRSxDQUFBO1FBQ1osR0FBRztZQUNELEdBQUcsR0FBRyxVQUFVLENBQUMsWUFBWSxDQUFDLFNBQVMsRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFBO1NBQ2hELFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxHQUFHLEVBQUUsVUFBVSxDQUFDLEVBQUM7UUFDNUMsT0FBTyxJQUFJLE9BQU8sQ0FBQyxDQUFDLE9BQU8sT0FBTyxPQUFPLENBQUMsR0FBRyxDQUFDLENBQUEsRUFBRSxDQUFDLENBQUE7S0FDbEQ7SUFDRCxPQUFPLElBQUksT0FBTyxDQUFDLENBQUMsT0FBTyxFQUFFLE1BQU07UUFDakMsTUFBTSxVQUFVLEdBQWEsRUFBRSxDQUFBO1FBQy9CLE1BQU0sVUFBVSxHQUFHLENBQUMsR0FBb0IsRUFBRSxTQUFpQjtZQUN6RCxJQUFJLEdBQUcsQ0FBQyxPQUFPLEVBQUU7O2dCQUVmLEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxVQUFVLENBQUMsTUFBTSxFQUFFLENBQUMsRUFBRSxFQUFFO29CQUMxQyxVQUFVLENBQUMsQ0FBQyxDQUFDLENBQUMsU0FBUyxFQUFFLENBQUE7aUJBQzFCO2dCQUNELE9BQU8sVUFBVSxDQUFDLE1BQU0sR0FBRyxDQUFDLEVBQUU7b0JBQzVCLFVBQVUsQ0FBQyxHQUFHLEVBQUUsQ0FBQTtpQkFDakI7Z0JBQ0QsT0FBTyxDQUFDLEdBQUcsQ0FBQyxLQUFLLENBQUMsQ0FBQTthQUNuQjtpQkFBTTtnQkFDTCxNQUFNLEdBQUcsR0FBRyxZQUFZLENBQUMsU0FBUyxFQUFFLElBQUksQ0FBQyxDQUFBO2dCQUN6QyxNQUFNLEdBQUcsR0FBRyxVQUFVLENBQUMsR0FBRyxDQUFDLENBQUE7Z0JBQzNCLElBQUk7b0JBQ0YsTUFBTSxXQUFXLEdBQW9CO3dCQUNuQyxHQUFHLEVBQUUsR0FBRzt3QkFDUixVQUFVLEVBQUUsVUFBVTt3QkFDdEIsRUFBRSxFQUFFLEdBQUcsQ0FBQyxFQUFFO3FCQUNYLENBQUE7b0JBQ0QsU0FBUyxDQUFDLFdBQVcsQ0FBQyxXQUFXLENBQUMsQ0FBQTtpQkFDbkM7Z0JBQUMsT0FBTyxLQUFLLEVBQUU7O2lCQUVmO2FBQ0Y7U0FDRixDQUFBO1FBUU07WUFDTCxNQUFNLEVBQUUsSUFBSSxFQUFFLEdBQUcsT0FBTyxDQUFDLElBQUksQ0FBQyxDQUFBO1lBQzlCLE1BQU0sRUFBRSxNQUFNLEVBQUUsR0FBRyxPQUFPLENBQUMsZ0JBQWdCLENBQUMsQ0FBQTtZQUM1QyxLQUFLLElBQUksQ0FBQyxHQUFHLENBQUMsRUFBRSxDQUFDLEdBQUcsSUFBSSxFQUFFLENBQUMsTUFBTSxHQUFHLENBQUMsRUFBRSxDQUFDLEVBQUUsRUFBRTtnQkFDMUMsTUFBTSxTQUFTLEdBQUcsSUFBSSxNQUFNLENBQUMsVUFBVSxDQUFDLENBQUE7Z0JBQ3hDLFNBQVMsQ0FBQyxFQUFFLENBQUMsU0FBUyxFQUFFLENBQUMsR0FBb0IsS0FBSyxVQUFVLENBQUMsR0FBRyxFQUFFLFNBQVMsQ0FBQyxDQUFDLENBQUE7Z0JBQzdFLFVBQVUsQ0FBQyxJQUFJLENBQUMsU0FBUyxDQUFDLENBQUE7YUFDM0I7U0FDRjtRQUNELEtBQUssSUFBSSxDQUFDLEdBQUcsQ0FBQyxFQUFFLENBQUMsR0FBRyxVQUFVLENBQUMsTUFBTSxFQUFFLENBQUMsRUFBRSxFQUFFO1lBQzFDLFFBQVEsQ0FBQyxTQUFTLEVBQUUsSUFBSSxDQUFDLENBQUMsSUFBSSxDQUFDLFVBQVUsR0FBc0I7Z0JBQzdELE1BQU0sR0FBRyxHQUFHLFVBQVUsQ0FBQyxHQUFHLENBQUMsQ0FBQTtnQkFDM0IsVUFBVSxDQUFDLENBQUMsQ0FBQyxDQUFDLFdBQVcsQ0FBQztvQkFDeEIsR0FBRyxFQUFFLEdBQUc7b0JBQ1IsVUFBVSxFQUFFLFVBQVU7b0JBQ3RCLEVBQUUsRUFBRSxDQUFDO2lCQUNOLENBQUMsQ0FBQTthQUNILENBQUMsQ0FBQyxLQUFLLENBQUMsTUFBTSxDQUFDLENBQUE7U0FDakI7S0FDRixDQUFDLENBQUE7QUFDSixDQUFDO0FBRUQ7Ozs7Ozs7Ozs7OztTQVlnQixTQUFTLENBQUUsU0FBaUIsRUFBRSxhQUFxQixFQUFFO0lBQ25FLElBQUksU0FBUyxHQUFHLENBQUM7UUFBRSxNQUFNLElBQUksVUFBVSxDQUFDLHVCQUF1QixDQUFDLENBQUE7SUFDaEUsSUFBSSxHQUFHLEdBQUcsRUFBRSxDQUFBO0lBQ1osR0FBRztRQUNELEdBQUcsR0FBRyxVQUFVLENBQUMsWUFBWSxDQUFDLFNBQVMsRUFBRSxJQUFJLENBQUMsQ0FBQyxDQUFBO0tBQ2hELFFBQVEsQ0FBQyxnQkFBZ0IsQ0FBQyxHQUFHLEVBQUUsVUFBVSxDQUFDLEVBQUM7SUFDNUMsT0FBTyxHQUFHLENBQUE7QUFDWjs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7OyJ9