diff --git a/README.hbs b/README.hbs
index e7de3ab..a3ab912 100644
--- a/README.hbs
+++ b/README.hbs
@@ -1,30 +1,27 @@
-# bigint-utils
+# bigint-crypto-utils
-Some extra functions to work with modular arithmetics along with secure random numbers and probable prime (Miller-Rabin primality test) generation/testing using native JS (stage 3) implementation of BigInt. It can be used with Node.js (>=10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility).
+Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a very fast strong probable prime generation/testing (parallelised multi-threaded Miller-Rabin primality test). It can be used with Node.js (>=10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility).
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html)**_
Many platforms provide native support for cryptography, such as [webcrypto](https://w3c.github.io/webcrypto/Overview.html) or [node crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
## Installation
-bigint-utils is distributed as both an ES6 and a CJS module.
+bigint-crypto-utils is distributed for [web browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or a IIFE file, and for Node.js (>=10.4.0) as a CJS module.
-The ES6 module is built for any [web browser supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). The module only uses native javascript implementations and no polyfills had been applied.
-
-The CJS module is built as a standard node module.
-
-bigint-utils can be imported to your project with `npm`:
+bigint-crypto-utils can be imported to your project with `npm`:
```bash
-npm install bigint-utils
+npm install bigint-crypto-utils
```
+NPM installation defaults to the ES6 module for browsers and the CJS for Node.js.
-For web browsers, you can also [download the bundle from GitHub](https://raw.githubusercontent.com/juanelas/bigint-utils/master/dist/bigint-utils-latest.browser.mod.min.js).
+For web browsers, you can also directly download the [IIFE file](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.min.js) or the [ES6 module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js) from GitHub.
## Usage example
With node js:
```javascript
-const bigintUtils = require('bigint-utils');
+const bigintCryptoUtils = require('bigint-crypto-utils');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
@@ -32,55 +29,55 @@ let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
-console.log(bigintModArith.modPow(a, b, n)); // prints 6
+console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
-console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
+console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
-console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
+console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
// Generation of a probable prime of 2048 bits
-const prime = await bigintUtils.prime(2048);
+const prime = await bigintCryptoUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
-if ( await bigintUtils.isProbablyPrime(prime) )
+if ( await bigintCryptoUtils.isProbablyPrime(prime) )
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
-const rnd = bigintUtils.randBetween(BigInt(2)**256);
+const rnd = bigintCryptoUtils.randBetween(BigInt(2)**256);
```
From a browser, you can just load the module in a html page as:
```html
```
-# bigint-utils JS Doc
+# bigint-crypto-utils JS Doc
{{>main}}
diff --git a/README.md b/README.md
index c021819..9b0f402 100644
--- a/README.md
+++ b/README.md
@@ -1,30 +1,27 @@
-# bigint-utils
+# bigint-crypto-utils
-Some extra functions to work with modular arithmetics along with secure random numbers and probable prime (Miller-Rabin primality test) generation/testing using native JS (stage 3) implementation of BigInt. It can be used with Node.js (>=10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility).
+Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a very fast strong probable prime generation/testing (parallelised multi-threaded Miller-Rabin primality test). It can be used with Node.js (>=10.4.0) and [Web Browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility).
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html)**_
Many platforms provide native support for cryptography, such as [webcrypto](https://w3c.github.io/webcrypto/Overview.html) or [node crypto](https://nodejs.org/dist/latest/docs/api/crypto.html).
## Installation
-bigint-utils is distributed as both an ES6 and a CJS module.
+bigint-crypto-utils is distributed for [web browsers supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or a IIFE file, and for Node.js (>=10.4.0) as a CJS module.
-The ES6 module is built for any [web browser supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility). The module only uses native javascript implementations and no polyfills had been applied.
-
-The CJS module is built as a standard node module.
-
-bigint-utils can be imported to your project with `npm`:
+bigint-crypto-utils can be imported to your project with `npm`:
```bash
-npm install bigint-utils
+npm install bigint-crypto-utils
```
+NPM installation defaults to the ES6 module for browsers and the CJS for Node.js.
-For web browsers, you can also [download the bundle from GitHub](https://raw.githubusercontent.com/juanelas/bigint-utils/master/dist/bigint-utils-latest.browser.mod.min.js).
+For web browsers, you can also directly download the [IIFE file](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.min.js) or the [ES6 module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js) from GitHub.
## Usage example
With node js:
```javascript
-const bigintUtils = require('bigint-utils');
+const bigintCryptoUtils = require('bigint-crypto-utils');
// Stage 3 BigInts with value 666 can be declared as BigInt('666')
// or the shorter new no-so-linter-friendly syntax 666n
@@ -32,55 +29,55 @@ let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
-console.log(bigintModArith.modPow(a, b, n)); // prints 6
+console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
-console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3
+console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
-console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
+console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
// Generation of a probable prime of 2048 bits
-const prime = await bigintUtils.prime(2048);
+const prime = await bigintCryptoUtils.prime(2048);
// Testing if a prime is a probable prime (Miller-Rabin)
-if ( await bigintUtils.isProbablyPrime(prime) )
+if ( await bigintCryptoUtils.isProbablyPrime(prime) )
// code if is prime
// Get a cryptographically secure random number between 1 and 2**256 bits.
-const rnd = bigintUtils.randBetween(BigInt(2)**256);
+const rnd = bigintCryptoUtils.randBetween(BigInt(2)**256);
```
From a browser, you can just load the module in a html page as:
```html
```
-# bigint-utils JS Doc
+# bigint-crypto-utils JS Doc
## Constants
@@ -88,36 +85,38 @@ From a browser, you can just load the module in a html page as:
An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
+The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
+main process, and it can be much faster (if several cores or cpu are available).
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
Finds the smallest positive element that is congruent to a in modulo n
@@ -141,6 +140,19 @@ Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
| --- | --- |
| a | number \| bigint |
+
+
+## eGcd ⇒ [egcdReturn](#egcdReturn)
+An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
+Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
+
+**Kind**: global constant
+
+| Param | Type |
+| --- | --- |
+| a | number \| bigint |
+| b | number \| bigint |
+
## gcd ⇒ bigint
@@ -154,6 +166,19 @@ Greatest-common divisor of two integers based on the iterative binary algorithm.
| a | number \| bigint |
| b | number \| bigint |
+
+
+## isProbablyPrime ⇒ Promise
+The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
+
+**Kind**: global constant
+**Returns**: Promise - A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
+
+| Param | Type | Description |
+| --- | --- | --- |
+| w | bigint | An integer to be tested for primality |
+| iterations | number | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
+
## lcm ⇒ bigint
@@ -167,32 +192,6 @@ The least common multiple computed as abs(a*b)/gcd(a,b)
| a | number \| bigint |
| b | number \| bigint |
-
-
-## toZn ⇒ bigint
-Finds the smallest positive element that is congruent to a in modulo n
-
-**Kind**: global constant
-**Returns**: bigint - The smallest positive representation of a in modulo n
-
-| Param | Type | Description |
-| --- | --- | --- |
-| a | number \| bigint | An integer |
-| n | number \| bigint | The modulo |
-
-
-
-## eGcd ⇒ [egcdReturn](#egcdReturn)
-An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
-Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
-
-**Kind**: global constant
-
-| Param | Type |
-| --- | --- |
-| a | number \| bigint |
-| b | number \| bigint |
-
## modInv ⇒ bigint
@@ -220,18 +219,20 @@ Modular exponentiation a**b mod n
| b | number \| bigint | exponent |
| n | number \| bigint | modulo |
-
+
-## randBytes ⇒ Promise
-Secure random bytes for both node and browsers. Browser implementation uses WebWorkers in order to not lock the main process
+## prime ⇒ Promise
+A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
+The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
+main process, and it can be much faster (if several cores or cpu are available).
**Kind**: global constant
-**Returns**: Promise - A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
+**Returns**: Promise - A promise that resolves to a bigint probable prime of bitLength bits
| Param | Type | Description |
| --- | --- | --- |
-| byteLength | number | The desired number of random bytes |
-| forceLength | boolean | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
+| bitLength | number | The required bit length for the generated prime |
+| iterations | number | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
@@ -246,31 +247,31 @@ Returns a cryptographically secure random integer between [min,max]
| max | bigint | Returned value will be <= max |
| min | bigint | Returned value will be >= min |
-
+
-## isProbablyPrime ⇒ Promise
-The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
+## randBytes ⇒ Promise
+Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global constant
-**Returns**: Promise - A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
+**Returns**: Promise - A promise that resolves to a Buffer/UInt8Array filled with cryptographically secure random bytes
| Param | Type | Description |
| --- | --- | --- |
-| w | bigint | An integer to be tested for primality |
-| iterations | number | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
+| byteLength | number | The desired number of random bytes |
+| forceLength | boolean | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
-
+
-## prime ⇒ Promise
-A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
+## toZn ⇒ bigint
+Finds the smallest positive element that is congruent to a in modulo n
**Kind**: global constant
-**Returns**: Promise - A promise that resolves to a bigint probable prime of bitLength bits
+**Returns**: bigint - The smallest positive representation of a in modulo n
| Param | Type | Description |
| --- | --- | --- |
-| bitLength | number | The required bit length for the generated prime |
-| iterations | number | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
+| a | number \| bigint | An integer |
+| n | number \| bigint | The modulo |
diff --git a/build/build.browser.tests.js b/build/build.browser.tests.js
index 4fac1e9..7c8309e 100644
--- a/build/build.browser.tests.js
+++ b/build/build.browser.tests.js
@@ -27,7 +27,7 @@ const testsJs = `
mocha.run();
`;
-fs.writeFileSync(dstFileName, template.replace('{{TESTS}}', testsJs));
+fs.writeFileSync(dstFileName, template.replace('{{TESTS}}', testsJs).replace('{{PKG_NAME}}', pkgJson.name));
/*
Now we create a bundle of all the tests called test.js
diff --git a/build/build.rollup.js b/build/build.rollup.js
index ecb5921..b1c74b2 100644
--- a/build/build.rollup.js
+++ b/build/build.rollup.js
@@ -27,24 +27,24 @@ const buildOptions = [
name: camelise(pkgJson.name)
}
},
- // { // Browser minified
- // input: {
- // input: path.join(srcDir, 'main.js'),
- // plugins: [
- // replace({
- // 'process.browser': true
- // }),
- // minify({
- // 'comments': false
- // })
- // ],
- // },
- // output: {
- // file: path.join(dstDir, `${pkgJson.name}-${pkgJson.version}.browser.min.js`),
- // format: 'iife',
- // name: camelise(pkgJson.name)
- // }
- // },
+ { // Browser minified
+ input: {
+ input: path.join(srcDir, 'main.js'),
+ plugins: [
+ replace({
+ 'process.browser': true
+ }),
+ minify({
+ 'comments': false
+ })
+ ],
+ },
+ output: {
+ file: path.join(dstDir, `${pkgJson.name}-${pkgJson.version}.browser.min.js`),
+ format: 'iife',
+ name: camelise(pkgJson.name)
+ }
+ },
{ // Browser esm
input: {
input: path.join(srcDir, 'main.js'),
@@ -59,23 +59,23 @@ const buildOptions = [
format: 'esm'
}
},
- // { // Browser esm minified
- // input: {
- // input: path.join(srcDir, 'main.js'),
- // plugins: [
- // replace({
- // 'process.browser': true
- // }),
- // minify({
- // 'comments': false
- // })
- // ],
- // },
- // output: {
- // file: path.join(dstDir, `${pkgJson.name}-${pkgJson.version}.browser.mod.min.js`),
- // format: 'esm'
- // }
- // },
+ { // Browser esm minified
+ input: {
+ input: path.join(srcDir, 'main.js'),
+ plugins: [
+ replace({
+ 'process.browser': true
+ }),
+ minify({
+ 'comments': false
+ })
+ ],
+ },
+ output: {
+ file: path.join(dstDir, `${pkgJson.name}-${pkgJson.version}.browser.mod.min.js`),
+ format: 'esm'
+ }
+ },
{ // Node
input: {
input: path.join(srcDir, 'main.js'),
@@ -97,17 +97,6 @@ for (const options of buildOptions) {
}
-
-// Let's manually build the worker file
-const workerFilename = path.join(srcDir, 'workerPrimalityTest.js');
-const dstFileName = path.join(dstDir, 'workerPrimalityTest.js');
-
-const workerFile = fs.readFileSync(workerFilename, 'utf-8');
-
-fs.writeFileSync(dstFileName, workerFile.replace('{{IIFE}}', `./${pkgJson.name}-latest.browser.js`));
-
-
-
/* --- HELPLER FUNCTIONS --- */
async function build(options) {
diff --git a/dist/bigint-utils-latest.browser.js b/dist/bigint-utils-latest.browser.js
index 1413386..eb16d95 100644
--- a/dist/bigint-utils-latest.browser.js
+++ b/dist/bigint-utils-latest.browser.js
@@ -222,6 +222,51 @@ var bigintUtils = (function (exports) {
* @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
const isProbablyPrime = async function (w, iterations = 16) {
+ {
+ return new Promise(resolve => {
+ let worker = _isProbablyPrimeWorker();
+
+ worker.onmessage = (event) => {
+ resolve(event.data.isPrime);
+ };
+ worker.postMessage({
+ 'rnd': w,
+ 'iterations': iterations
+ });
+ });
+ }
+ };
+ function _isProbablyPrimeWorker() {
+ async function _onmessage(event) { // Let's start once we are called
+ // event.data = {rnd: , iterations: }
+ const isPrime = await isProbablyPrime(event.data.rnd, event.data.iterations, false);
+ postMessage({
+ 'isPrime': isPrime,
+ 'value': event.data.rnd
+ });
+ }
+
+ let workerCode = `(() => {
+ 'use strict';
+
+ const eGcd = ${eGcd.toString()};
+ const modInv = ${modInv.toString()};
+ const modPow = ${modPow.toString()};
+ const toZn = ${toZn.toString()};
+ const randBytes = ${randBytes.toString()};
+ const randBetween = ${randBetween.toString()};
+ const isProbablyPrime = ${_isProbablyPrime.toString()};
+ ${bitLength.toString()}
+ ${fromBuffer.toString()}
+
+ onmessage = ${_onmessage.toString()};
+ })()`;
+ var _blob = new Blob([workerCode], { type: 'text/javascript' });
+
+ return new Worker(window.URL.createObjectURL(_blob));
+ }
+
+ async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
@@ -538,7 +583,7 @@ var bigintUtils = (function (exports) {
} while (--iterations);
return true;
- };
+ }
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
@@ -553,8 +598,7 @@ var bigintUtils = (function (exports) {
{
let workerList = [];
for (let i = 0; i < self.navigator.hardwareConcurrency; i++) {
- const moduleDir = new URL('./', (document.currentScript && document.currentScript.src || new URL('bigint-utils-0.9.0.browser.js', document.baseURI).href)).pathname;
- let newWorker = new Worker(`${moduleDir}/workerPrimalityTest.js`);
+ let newWorker = _isProbablyPrimeWorker();
newWorker.onmessage = async (event) => {
if (event.data.isPrime) {
// if a prime number has been found, stop all the workers, and return it
diff --git a/dist/bigint-utils-latest.browser.min.js b/dist/bigint-utils-latest.browser.min.js
index b581ef7..2e89ca3 100644
--- a/dist/bigint-utils-latest.browser.min.js
+++ b/dist/bigint-utils-latest.browser.min.js
@@ -1 +1,15 @@
-var bigintUtils=function(a){'use strict';function b(a){let b=BigInt(0);for(let c of a.values()){let a=BigInt(c);b=(b<>=BigInt(1))>BigInt(1));return c}const d=function(b){return b=BigInt(b),b>=BigInt(0)?b:-b},e=function(c,e){c=d(c),e=d(e);let f=BigInt(0);for(;!((c|e)&BigInt(1));)c>>=BigInt(1),e>>=BigInt(1),f++;for(;!(c&BigInt(1));)c>>=BigInt(1);do{for(;!(e&BigInt(1));)e>>=BigInt(1);if(c>e){let a=c;c=e,e=a}e-=c}while(e);return c<b?b+c:b},g=function(c,d){c=BigInt(c),d=BigInt(d);let e=BigInt(0),f=BigInt(1),g=BigInt(1),h=BigInt(0);for(;c!==BigInt(0);){let a=d/c,b=d%c,i=e-g*a,j=f-h*a;d=c,c=b,e=g,f=h,g=i,h=j}return{b:d,x:e,y:f}},h=function(b,a){let c=g(b,a);return c.b===BigInt(1)?f(c.x,a):null},i=function(c,e,g){if(g=BigInt(g),c=f(c,g),e=BigInt(e),e{let d;const e=(a,d)=>{b&&(d[0]|=128),c(d)};d=new Uint8Array(a),l(d,e)})},k=async function(a,d=1){let e,f=c(a),g=f>>3,h=f-8*g;0a||i{onmessage=function(a){const b=self.crypto.getRandomValues(a.data.buf);self.postMessage({buf:b,id:a.data.id})}});return a}();return a.abs=d,a.eGcd=g,a.gcd=e,a.isProbablyPrime=async function(c,b=16){if(c===BigInt(2))return!0;if((c&BigInt(1))===BigInt(0)||c===BigInt(1))return!1;const e=[3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597];for(let a=0;a{if(e.data.isPrime){for(let a=0;a {
+ 'use strict';
+
+ const eGcd = ${i.toString()};
+ const modInv = ${j.toString()};
+ const modPow = ${k.toString()};
+ const toZn = ${h.toString()};
+ const randBytes = ${l.toString()};
+ const randBetween = ${n.toString()};
+ const isProbablyPrime = ${c.toString()};
+ ${e.toString()}
+ ${d.toString()}
+
+ onmessage = ${async function(a){const b=await o(a.data.rnd,a.data.iterations,!1);postMessage({isPrime:b,value:a.data.rnd})}.toString()};
+ })()`;var b=new Blob([a],{type:"text/javascript"});return new Worker(window.URL.createObjectURL(b))}async function c(c,b=16){if(c===BigInt(2))return!0;if((c&BigInt(1))===BigInt(0)||c===BigInt(1))return!1;const e=[3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597];for(let a=0;a>=BigInt(1))>BigInt(1));return c}const f=function(b){return b=BigInt(b),b>=BigInt(0)?b:-b},g=function(c,d){c=f(c),d=f(d);let e=BigInt(0);for(;!((c|d)&BigInt(1));)c>>=BigInt(1),d>>=BigInt(1),e++;for(;!(c&BigInt(1));)c>>=BigInt(1);do{for(;!(d&BigInt(1));)d>>=BigInt(1);if(c>d){let a=c;c=d,d=a}d-=c}while(d);return c<b?b+c:b},i=function(c,d){c=BigInt(c),d=BigInt(d);let e=BigInt(0),f=BigInt(1),g=BigInt(1),h=BigInt(0);for(;c!==BigInt(0);){let a=d/c,b=d%c,i=e-g*a,j=f-h*a;d=c,c=b,e=g,f=h,g=i,h=j}return{b:d,x:e,y:f}},j=function(b,a){let c=i(b,a);return c.b===BigInt(1)?h(c.x,a):null},k=function(c,d,e){if(e=BigInt(e),c=h(c,e),d=BigInt(d),d{let d;d=new Uint8Array(a),self.crypto.getRandomValues(d),b&&(d[0]|=128),c(d)})},n=async function(a,b=1){let c,f=e(a),g=f>>3,h=f-8*g;0a||i{let e=b();e.onmessage=a=>{d(a.data.isPrime)},e.postMessage({rnd:a,iterations:c})})};return a.abs=f,a.eGcd=i,a.gcd=g,a.isProbablyPrime=o,a.lcm=function(c,d){return c=BigInt(c),d=BigInt(d),f(c*d)/g(c,d)},a.modInv=j,a.modPow=k,a.prime=async function(a,c=16){return new Promise(async e=>{{let f=[];for(let g,h=0;h{if(b.data.isPrime){for(let a=0;a {
+ let worker = _isProbablyPrimeWorker();
+
+ worker.onmessage = (event) => {
+ resolve(event.data.isPrime);
+ };
+ worker.postMessage({
+ 'rnd': w,
+ 'iterations': iterations
+ });
+ });
+ }
+};
+function _isProbablyPrimeWorker() {
+ async function _onmessage(event) { // Let's start once we are called
+ // event.data = {rnd: , iterations: }
+ const isPrime = await isProbablyPrime(event.data.rnd, event.data.iterations, false);
+ postMessage({
+ 'isPrime': isPrime,
+ 'value': event.data.rnd
+ });
+ }
+
+ let workerCode = `(() => {
+ 'use strict';
+
+ const eGcd = ${eGcd.toString()};
+ const modInv = ${modInv.toString()};
+ const modPow = ${modPow.toString()};
+ const toZn = ${toZn.toString()};
+ const randBytes = ${randBytes.toString()};
+ const randBetween = ${randBetween.toString()};
+ const isProbablyPrime = ${_isProbablyPrime.toString()};
+ ${bitLength.toString()}
+ ${fromBuffer.toString()}
+
+ onmessage = ${_onmessage.toString()};
+ })()`;
+ var _blob = new Blob([workerCode], { type: 'text/javascript' });
+
+ return new Worker(window.URL.createObjectURL(_blob));
+}
+
+async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
@@ -535,7 +580,7 @@ const isProbablyPrime = async function (w, iterations = 16) {
} while (--iterations);
return true;
-};
+}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
@@ -550,8 +595,7 @@ const prime = async function (bitLength, iterations = 16) {
{
let workerList = [];
for (let i = 0; i < self.navigator.hardwareConcurrency; i++) {
- const moduleDir = new URL('./', import.meta.url).pathname;
- let newWorker = new Worker(`${moduleDir}/workerPrimalityTest.js`);
+ let newWorker = _isProbablyPrimeWorker();
newWorker.onmessage = async (event) => {
if (event.data.isPrime) {
// if a prime number has been found, stop all the workers, and return it
diff --git a/dist/bigint-utils-latest.browser.mod.min.js b/dist/bigint-utils-latest.browser.mod.min.js
index a5b6532..36e0845 100644
--- a/dist/bigint-utils-latest.browser.mod.min.js
+++ b/dist/bigint-utils-latest.browser.mod.min.js
@@ -1 +1,15 @@
-const abs=function(b){return b=BigInt(b),b>=BigInt(0)?b:-b},gcd=function(c,d){c=abs(c),d=abs(d);let e=BigInt(0);for(;!((c|d)&BigInt(1));)c>>=BigInt(1),d>>=BigInt(1),e++;for(;!(c&BigInt(1));)c>>=BigInt(1);do{for(;!(d&BigInt(1));)d>>=BigInt(1);if(c>d){let a=c;c=d,d=a}d-=c}while(d);return c<b?b+c:b},eGcd=function(c,d){c=BigInt(c),d=BigInt(d);let e=BigInt(0),f=BigInt(1),g=BigInt(1),h=BigInt(0);for(;c!==BigInt(0);){let a=d/c,b=d%c,i=e-g*a,j=f-h*a;d=c,c=b,e=g,f=h,g=i,h=j}return{b:d,x:e,y:f}},modInv=function(b,a){let c=eGcd(b,a);return c.b===BigInt(1)?toZn(c.x,a):null},modPow=function(c,d,e){if(e=BigInt(e),c=toZn(c,e),d=BigInt(d),d{let d;const e=(a,d)=>{b&&(d[0]|=128),c(d)};d=new Uint8Array(a),getRandomValuesWorker(d,e)})},randBetween=async function(a,b=1){let c,d=bitLength(a),e=d>>3,f=d-8*e;0a||g{if(e.data.isPrime){for(let a=0;a{onmessage=function(a){const b=self.crypto.getRandomValues(a.data.buf);self.postMessage({buf:b,id:a.data.id})}});return a}();function fromBuffer(a){let b=BigInt(0);for(let c of a.values()){let a=BigInt(c);b=(b<>=BigInt(1))>BigInt(1));return c}export{abs,eGcd,gcd,isProbablyPrime,lcm,modInv,modPow,prime,randBetween,randBytes,toZn};
+const abs=function(b){return b=BigInt(b),b>=BigInt(0)?b:-b},gcd=function(c,d){c=abs(c),d=abs(d);let e=BigInt(0);for(;!((c|d)&BigInt(1));)c>>=BigInt(1),d>>=BigInt(1),e++;for(;!(c&BigInt(1));)c>>=BigInt(1);do{for(;!(d&BigInt(1));)d>>=BigInt(1);if(c>d){let a=c;c=d,d=a}d-=c}while(d);return c<b?b+c:b},eGcd=function(c,d){c=BigInt(c),d=BigInt(d);let e=BigInt(0),f=BigInt(1),g=BigInt(1),h=BigInt(0);for(;c!==BigInt(0);){let a=d/c,b=d%c,i=e-g*a,j=f-h*a;d=c,c=b,e=g,f=h,g=i,h=j}return{b:d,x:e,y:f}},modInv=function(b,a){let c=eGcd(b,a);return c.b===BigInt(1)?toZn(c.x,a):null},modPow=function(c,d,e){if(e=BigInt(e),c=toZn(c,e),d=BigInt(d),d{let d;d=new Uint8Array(a),self.crypto.getRandomValues(d),b&&(d[0]|=128),c(d)})},randBetween=async function(a,b=1){let c,d=bitLength(a),e=d>>3,f=d-8*e;0a||g{let d=_isProbablyPrimeWorker();d.onmessage=a=>{c(a.data.isPrime)},d.postMessage({rnd:a,iterations:b})})};function _isProbablyPrimeWorker(){let a=`(() => {
+ 'use strict';
+
+ const eGcd = ${eGcd.toString()};
+ const modInv = ${modInv.toString()};
+ const modPow = ${modPow.toString()};
+ const toZn = ${toZn.toString()};
+ const randBytes = ${randBytes.toString()};
+ const randBetween = ${randBetween.toString()};
+ const isProbablyPrime = ${_isProbablyPrime.toString()};
+ ${bitLength.toString()}
+ ${fromBuffer.toString()}
+
+ onmessage = ${async function(a){const b=await isProbablyPrime(a.data.rnd,a.data.iterations,!1);postMessage({isPrime:b,value:a.data.rnd})}.toString()};
+ })()`;var b=new Blob([a],{type:"text/javascript"});return new Worker(window.URL.createObjectURL(b))}async function _isProbablyPrime(c,b=16){if(c===BigInt(2))return!0;if((c&BigInt(1))===BigInt(0)||c===BigInt(1))return!1;const e=[3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597];for(let a=0;a{{let d=[];for(let e,f=0;f{if(f.data.isPrime){for(let a=0;a>=BigInt(1))>BigInt(1));return c}export{abs,eGcd,gcd,isProbablyPrime,lcm,modInv,modPow,prime,randBetween,randBytes,toZn};
diff --git a/dist/bigint-utils-latest.node.js b/dist/bigint-utils-latest.node.js
index 51363a5..cfac845 100644
--- a/dist/bigint-utils-latest.node.js
+++ b/dist/bigint-utils-latest.node.js
@@ -226,6 +226,12 @@ const randBetween = async function (max, min = 1) {
* @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
const isProbablyPrime = async function (w, iterations = 16) {
+ {
+ return _isProbablyPrime(w, iterations);
+ }
+};
+
+async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
@@ -542,7 +548,7 @@ const isProbablyPrime = async function (w, iterations = 16) {
} while (--iterations);
return true;
-};
+}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
diff --git a/dist/workerPrimalityTest.js b/dist/workerPrimalityTest.js
deleted file mode 100644
index 31057f8..0000000
--- a/dist/workerPrimalityTest.js
+++ /dev/null
@@ -1,14 +0,0 @@
-'use strict';
-
-//const window = self;
-
-importScripts('./bigint-utils-latest.browser.js'); // to be replaced during build with rollup replace
-
-onmessage = async function(event) { // Let's start once we are called
- // event.data = {rnd: , iterations: }
- const isPrime = await bigintUtils.isProbablyPrime(event.data.rnd, event.data.iterations);
- postMessage({
- 'isPrime': isPrime,
- 'value' : event.data.rnd
- });
-};
\ No newline at end of file
diff --git a/package.json b/package.json
index e8bd3d1..36ee81c 100644
--- a/package.json
+++ b/package.json
@@ -1,10 +1,12 @@
{
- "name": "bigint-utils",
+ "name": "bigint-crypto-utils",
"version": "0.9.0",
- "description": "Arbitrary precision modular arithmetics, cryptographically secure random numbers and prime generation/testing using native JS (stage 3) implementation of BigInt",
+ "description": "Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes arbitrary precision modular arithmetics, cryptographically secure random numbers and strong probable prime generation/testing ",
"keywords": [
"modular arithmetics",
+ "crypto",
"prime",
+ "random",
"rng",
"prng",
"primality test",
@@ -16,9 +18,9 @@
"email": "jserrano@entel.upc.edu",
"url": "https://github.com/juanelas"
},
- "repository": "github:juanelas/bigint-utils",
- "main": "./dist/bigint-utils-latest.node.js",
- "browser": "./dist/bigint-utils-latest.browser.mod.js",
+ "repository": "github:juanelas/bigint-crypto-utils",
+ "main": "./dist/bigint-crypto-utils-latest.node.js",
+ "browser": "./dist/bigint-crypto-utils-latest.browser.mod.js",
"directories": {
"build": "./build",
"dist": "./dist",
@@ -30,6 +32,7 @@
"build": "node build/build.rollup.js",
"build:browserTests": "node build/build.browser.tests.js",
"build:docs": "jsdoc2md --template=README.hbs --files ./src/main.js > README.md",
+ "build:all": "npm run build && npm run build:browserTests && npm run build:docs",
"prepublishOnly": "npm run build && npm run build:docs"
},
"devDependencies": {
diff --git a/src/browser-test-template.html b/src/browser-test-template.html
index 04ec5a4..3cb28da 100644
--- a/src/browser-test-template.html
+++ b/src/browser-test-template.html
@@ -1,7 +1,7 @@
- Mocha Tests
+ {{PKG_NAME}} - Mocha Tests
diff --git a/src/main.js b/src/main.js
index 7179c2a..0450479 100644
--- a/src/main.js
+++ b/src/main.js
@@ -12,64 +12,6 @@ export const abs = function (a) {
return (a >= BigInt(0)) ? a : -a;
};
-/**
- * Greatest-common divisor of two integers based on the iterative binary algorithm.
- *
- * @param {number|bigint} a
- * @param {number|bigint} b
- *
- * @returns {bigint} The greatest common divisor of a and b
- */
-export const gcd = function (a, b) {
- a = abs(a);
- b = abs(b);
- let shift = BigInt(0);
- while (!((a | b) & BigInt(1))) {
- a >>= BigInt(1);
- b >>= BigInt(1);
- shift++;
- }
- while (!(a & BigInt(1))) a >>= BigInt(1);
- do {
- while (!(b & BigInt(1))) b >>= BigInt(1);
- if (a > b) {
- let x = a;
- a = b;
- b = x;
- }
- b -= a;
- } while (b);
-
- // rescale
- return a << shift;
-};
-
-/**
- * The least common multiple computed as abs(a*b)/gcd(a,b)
- * @param {number|bigint} a
- * @param {number|bigint} b
- *
- * @returns {bigint} The least common multiple of a and b
- */
-export const lcm = function (a, b) {
- a = BigInt(a);
- b = BigInt(b);
- return abs(a * b) / gcd(a, b);
-};
-
-/**
- * Finds the smallest positive element that is congruent to a in modulo n
- * @param {number|bigint} a An integer
- * @param {number|bigint} n The modulo
- *
- * @returns {bigint} The smallest positive representation of a in modulo n
- */
-export const toZn = function (a, n) {
- n = BigInt(n);
- a = BigInt(a) % n;
- return (a < 0) ? a + n : a;
-};
-
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
@@ -112,6 +54,79 @@ export const eGcd = function (a, b) {
};
};
+/**
+ * Greatest-common divisor of two integers based on the iterative binary algorithm.
+ *
+ * @param {number|bigint} a
+ * @param {number|bigint} b
+ *
+ * @returns {bigint} The greatest common divisor of a and b
+ */
+export const gcd = function (a, b) {
+ a = abs(a);
+ b = abs(b);
+ let shift = BigInt(0);
+ while (!((a | b) & BigInt(1))) {
+ a >>= BigInt(1);
+ b >>= BigInt(1);
+ shift++;
+ }
+ while (!(a & BigInt(1))) a >>= BigInt(1);
+ do {
+ while (!(b & BigInt(1))) b >>= BigInt(1);
+ if (a > b) {
+ let x = a;
+ a = b;
+ b = x;
+ }
+ b -= a;
+ } while (b);
+
+ // rescale
+ return a << shift;
+};
+
+/**
+ * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
+ *
+ * @param {bigint} w An integer to be tested for primality
+ * @param {number} iterations The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
+ *
+ * @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
+ */
+export const isProbablyPrime = async function (w, iterations = 16) {
+ if (process.browser) {
+ return new Promise(resolve => {
+ let worker = _isProbablyPrimeWorker();
+
+ worker.onmessage = (event) => {
+ worker.terminate();
+ resolve(event.data.isPrime);
+ };
+
+ worker.postMessage({
+ 'rnd': w,
+ 'iterations': iterations
+ });
+ });
+ } else {
+ return _isProbablyPrime(w, iterations);
+ }
+};
+
+/**
+ * The least common multiple computed as abs(a*b)/gcd(a,b)
+ * @param {number|bigint} a
+ * @param {number|bigint} b
+ *
+ * @returns {bigint} The least common multiple of a and b
+ */
+export const lcm = function (a, b) {
+ a = BigInt(a);
+ b = BigInt(b);
+ return abs(a * b) / gcd(a, b);
+};
+
/**
* Modular inverse.
*
@@ -161,7 +176,92 @@ export const modPow = function (a, b, n) {
};
/**
- * Secure random bytes for both node and browsers. Browser implementation uses WebWorkers in order to not lock the main process
+ * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
+ * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
+ * main process, and it can be much faster (if several cores or cpu are available).
+ *
+ * @param {number} bitLength The required bit length for the generated prime
+ * @param {number} iterations The number of iterations for the Miller-Rabin Probabilistic Primality Test
+ *
+ * @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits
+ */
+export const prime = async function (bitLength, iterations = 16) {
+ return new Promise(async (resolve) => {
+ if (process.browser) {
+ let workerList = [];
+ for (let i = 0; i < self.navigator.hardwareConcurrency; i++) {
+ let newWorker = _isProbablyPrimeWorker();
+ newWorker.onmessage = async (event) => {
+ if (event.data.isPrime) {
+ // if a prime number has been found, stop all the workers, and return it
+ for (let j = 0; j < workerList.length; j++) {
+ workerList[j].terminate();
+ }
+ while (workerList.length) {
+ workerList.pop();
+ }
+ resolve(event.data.value);
+ } else { // if a composite is found, make the worker test another random number
+ let rnd = BigInt(0);
+ rnd = fromBuffer(await randBytes(bitLength / 8, true));
+ newWorker.postMessage({
+ 'rnd': rnd,
+ 'iterations': iterations
+ });
+ }
+ };
+ workerList.push(newWorker);
+ }
+
+ for (const worker of workerList) {
+ let rnd = BigInt(0);
+ rnd = fromBuffer(await randBytes(bitLength / 8, true));
+ worker.postMessage({
+ 'rnd': rnd,
+ 'iterations': iterations
+ });
+ }
+
+ } else {
+ let rnd = BigInt(0);
+ do {
+ rnd = fromBuffer(await randBytes(bitLength / 8, true));
+ } while (! await isProbablyPrime(rnd, iterations));
+ resolve(rnd);
+ }
+ });
+};
+
+/**
+ * Returns a cryptographically secure random integer between [min,max]
+ * @param {bigint} max Returned value will be <= max
+ * @param {bigint} min Returned value will be >= min
+ *
+ * @returns {Promise} A promise that resolves to a cryptographically secure random bigint between [min,max]
+ */
+export const randBetween = async function (max, min = 1) {
+ let bitLen = bitLength(max);
+ let byteLength = bitLen >> 3;
+ let remaining = bitLen - (byteLength * 8);
+ let extraBits;
+ if (remaining > 0) {
+ byteLength++;
+ extraBits = 2 ** remaining - 1;
+ }
+
+ let rnd;
+ do {
+ let buf = await randBytes(byteLength);
+ // remove extra bits
+ if (remaining > 0)
+ buf[0] = buf[0] & extraBits;
+ rnd = fromBuffer(buf);
+ } while (rnd > max || rnd < min);
+ return rnd;
+};
+
+/**
+ * Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} forceLength If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
@@ -193,44 +293,58 @@ export const randBytes = async function (byteLength, forceLength = false) {
});
};
-
/**
- * Returns a cryptographically secure random integer between [min,max]
- * @param {bigint} max Returned value will be <= max
- * @param {bigint} min Returned value will be >= min
+ * Finds the smallest positive element that is congruent to a in modulo n
+ * @param {number|bigint} a An integer
+ * @param {number|bigint} n The modulo
*
- * @returns {Promise} A promise that resolves to a cryptographically secure random bigint between [min,max]
+ * @returns {bigint} The smallest positive representation of a in modulo n
*/
-export const randBetween = async function (max, min = 1) {
- let bitLen = bitLength(max);
- let byteLength = bitLen >> 3;
- let remaining = bitLen - (byteLength * 8);
- let extraBits;
- if (remaining > 0) {
- byteLength++;
- extraBits = 2 ** remaining - 1;
- }
-
- let rnd;
- do {
- let buf = await randBytes(byteLength);
- // remove extra bits
- if (remaining > 0)
- buf[0] = buf[0] & extraBits;
- rnd = fromBuffer(buf);
- } while (rnd > max || rnd < min);
- return rnd;
+export const toZn = function (a, n) {
+ n = BigInt(n);
+ a = BigInt(a) % n;
+ return (a < 0) ? a + n : a;
};
-/**
- * The test first tries if any of the first 250 small primes are a factor of the input number and then passes several iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
- *
- * @param {bigint} w An integer to be tested for primality
- * @param {number} iterations The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
- *
- * @return {Promise} A promise that resolve to a boolean that is either true (a probably prime number) or false (definitely composite)
- */
-export const isProbablyPrime = async function (w, iterations = 16) {
+
+
+/* HELPER FUNCTIONS */
+
+function fromBuffer(buf) {
+ let ret = BigInt(0);
+ for (let i of buf.values()) {
+ let bi = BigInt(i);
+ ret = (ret << BigInt(8)) + bi;
+ }
+ return ret;
+}
+
+function bitLength(a) {
+ let bits = 1;
+ do {
+ bits++;
+ } while ((a >>= BigInt(1)) > BigInt(1));
+ return bits;
+}
+
+function _isProbablyPrimeWorker() {
+ async function _onmessage(event) { // Let's start once we are called
+ // event.data = {rnd: , iterations: }
+ const isPrime = await isProbablyPrime(event.data.rnd, event.data.iterations);
+ postMessage({
+ 'isPrime': isPrime,
+ 'value': event.data.rnd
+ });
+ }
+
+ let workerCode = `(() => {'use strict';const eGcd = ${eGcd.toString()};const modInv = ${modInv.toString()};const modPow = ${modPow.toString()};const toZn = ${toZn.toString()};const randBytes = ${randBytes.toString()};const randBetween = ${randBetween.toString()};const isProbablyPrime = ${_isProbablyPrime.toString()};${bitLength.toString()}${fromBuffer.toString()}onmessage = ${_onmessage.toString()};})()`;
+
+ var _blob = new Blob([workerCode], { type: 'text/javascript' });
+
+ return new Worker(window.URL.createObjectURL(_blob));
+}
+
+async function _isProbablyPrime(w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
@@ -547,82 +661,4 @@ export const isProbablyPrime = async function (w, iterations = 16) {
} while (--iterations);
return true;
-};
-
-/**
- * A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator
- *
- * @param {number} bitLength The required bit length for the generated prime
- * @param {number} iterations The number of iterations for the Miller-Rabin Probabilistic Primality Test
- *
- * @returns {Promise} A promise that resolves to a bigint probable prime of bitLength bits
- */
-export const prime = async function (bitLength, iterations = 16) {
- return new Promise(async (resolve) => {
- if (process.browser) {
- let workerList = [];
- for (let i = 0; i < self.navigator.hardwareConcurrency; i++) {
- const moduleDir = new URL('./', import.meta.url).pathname;
- let newWorker = new Worker(`${moduleDir}/workerPrimalityTest.js`);
- newWorker.onmessage = async (event) => {
- if (event.data.isPrime) {
- // if a prime number has been found, stop all the workers, and return it
- for (let j = 0; j < workerList.length; j++) {
- workerList[j].terminate();
- }
- while (workerList.length) {
- workerList.pop();
- }
- resolve(event.data.value);
- } else { // if a composite is found, make the worker test another random number
- let rnd = BigInt(0);
- rnd = fromBuffer(await randBytes(bitLength / 8, true));
- newWorker.postMessage({
- 'rnd': rnd,
- 'iterations': iterations
- });
- }
- };
- workerList.push(newWorker);
- }
-
- for (const worker of workerList) {
- let rnd = BigInt(0);
- rnd = fromBuffer(await randBytes(bitLength / 8, true));
- worker.postMessage({
- 'rnd': rnd,
- 'iterations': iterations
- });
- }
-
- } else {
- let rnd = BigInt(0);
- do {
- rnd = fromBuffer(await randBytes(bitLength / 8, true));
- } while (! await isProbablyPrime(rnd, iterations));
- resolve(rnd);
- }
- });
-};
-
-
-
-
-/* HELPER FUNCTIONS */
-
-function fromBuffer(buf) {
- let ret = BigInt(0);
- for (let i of buf.values()) {
- let bi = BigInt(i);
- ret = (ret << BigInt(8)) + bi;
- }
- return ret;
-}
-
-function bitLength(a) {
- let bits = 1;
- do {
- bits++;
- } while ((a >>= BigInt(1)) > BigInt(1));
- return bits;
-}
+}
\ No newline at end of file
diff --git a/src/workerPrimalityTest.js b/src/workerPrimalityTest.js
deleted file mode 100644
index 1d45592..0000000
--- a/src/workerPrimalityTest.js
+++ /dev/null
@@ -1,14 +0,0 @@
-'use strict';
-
-//const window = self;
-
-importScripts('{{IIFE}}'); // to be replaced during build with rollup replace
-
-onmessage = async function(event) { // Let's start once we are called
- // event.data = {rnd: , iterations: }
- const isPrime = await bigintUtils.isProbablyPrime(event.data.rnd, event.data.iterations);
- postMessage({
- 'isPrime': isPrime,
- 'value' : event.data.rnd
- });
-};
\ No newline at end of file
diff --git a/test/01_PrimeValidation.js b/test/01_PrimeValidation.js
index 0cdc0e7..00114c3 100644
--- a/test/01_PrimeValidation.js
+++ b/test/01_PrimeValidation.js
@@ -2,7 +2,7 @@
// For the browser test builder to work you MUST import them module in a variable that
// is the camelised version of the package name.
-const bigintUtils = require('../dist/bigint-utils-latest.node');
+const bigintCryptoUtils = require('../dist/bigint-crypto-utils-latest.node');
const chai = require('chai');
const numbers = [
@@ -52,7 +52,7 @@ describe('Testing validation of prime numbers', function () {
for (const num of numbers) {
describe(`isProbablyPrime(${num.value})`, function () {
it(`should return ${num.prime}`, async function () {
- const ret = await bigintUtils.isProbablyPrime(num.value);
+ const ret = await bigintCryptoUtils.isProbablyPrime(num.value);
chai.expect(ret).to.equal(num.prime);
});
});
diff --git a/test/02_PrimeGeneration.js b/test/02_PrimeGeneration.js
index e6c13ed..6f2f631 100644
--- a/test/02_PrimeGeneration.js
+++ b/test/02_PrimeGeneration.js
@@ -2,23 +2,22 @@
// For the browser test builder to work you MUST import them module in a variable that
// is the camelised version of the package name.
-const bigintUtils = require('../dist/bigint-utils-latest.node');
+const bigintCryptoUtils = require('../dist/bigint-crypto-utils-latest.node');
const chai = require('chai');
const bitLengths = [
- 256,
- 512,
1024,
2048,
- 3072
+ 3072,
+ 4096
];
describe('Testing generation of prime numbers', function () {
for (const bitLength of bitLengths) {
describe(`Executing prime(${bitLength})`, function () {
it(`should return a random ${bitLength}-bits probable prime`, async function () {
- let prime = await bigintUtils.prime(bitLength);
- const ret = await bigintUtils.isProbablyPrime(prime);
+ let prime = await bigintCryptoUtils.prime(bitLength);
+ const ret = await bigintCryptoUtils.isProbablyPrime(prime);
chai.expect(ret).to.equal(true);
let bits = 1;
do {
diff --git a/test/browser/index.html b/test/browser/index.html
index 3ed7ace..1517f11 100644
--- a/test/browser/index.html
+++ b/test/browser/index.html
@@ -1,7 +1,7 @@
- Mocha Tests
+ bigint-crypto-utils - Mocha Tests
@@ -12,8 +12,8 @@
diff --git a/test/browser/tests.js b/test/browser/tests.js
index aa9cbd4..b80e88d 100644
--- a/test/browser/tests.js
+++ b/test/browser/tests.js
@@ -50,7 +50,7 @@ describe('Testing validation of prime numbers', function () {
for (const num of numbers) {
describe(`isProbablyPrime(${num.value})`, function () {
it(`should return ${num.prime}`, async function () {
- const ret = await bigintUtils.isProbablyPrime(num.value);
+ const ret = await bigintCryptoUtils.isProbablyPrime(num.value);
chai.expect(ret).to.equal(num.prime);
});
});
@@ -63,19 +63,18 @@ describe('Testing validation of prime numbers', function () {
const bitLengths = [
- 256,
- 512,
1024,
2048,
- 3072
+ 3072,
+ 4096
];
describe('Testing generation of prime numbers', function () {
for (const bitLength of bitLengths) {
describe(`Executing prime(${bitLength})`, function () {
it(`should return a random ${bitLength}-bits probable prime`, async function () {
- let prime = await bigintUtils.prime(bitLength);
- const ret = await bigintUtils.isProbablyPrime(prime);
+ let prime = await bigintCryptoUtils.prime(bitLength);
+ const ret = await bigintCryptoUtils.isProbablyPrime(prime);
chai.expect(ret).to.equal(true);
let bits = 1;
do {