bigint-crypto-utils/README.hbs

86 lines
3.9 KiB
Handlebars
Raw Normal View History

2019-04-21 07:50:50 +00:00
# bigint-crypto-utils
2019-04-19 07:42:28 +00:00
2019-12-20 16:07:32 +00:00
Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions to work with modular arithmetics along with secure random numbers and a fast strong probable prime generator/tester (parallelised multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime with `node --experimental-worker` with Node.js version >= 10.5.0 and < 11.
2019-04-19 07:42:28 +00:00
2019-04-25 15:28:42 +00:00
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html)._
2019-04-19 07:42:28 +00:00
## Installation
2019-04-25 15:28:42 +00:00
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility) as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
bigint-crypto-utils can be imported to your project with `npm`:
2019-04-19 07:42:28 +00:00
```bash
2019-04-19 10:04:06 +00:00
npm install bigint-crypto-utils
2019-04-19 07:42:28 +00:00
```
2019-04-20 20:16:58 +00:00
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
2019-04-19 07:42:28 +00:00
2019-12-12 09:12:53 +00:00
For web browsers, you can also directly download the [IIFE file](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.js) or the [ES6 module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js) from GitHub.
2019-04-19 07:42:28 +00:00
## Usage example
With node js:
```javascript
2019-04-19 10:04:06 +00:00
const bigintCryptoUtils = require('bigint-crypto-utils');
2019-04-19 07:42:28 +00:00
2019-04-21 07:39:28 +00:00
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
2019-04-21 07:50:50 +00:00
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
2019-04-21 07:39:28 +00:00
*/
2019-04-19 07:42:28 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-19 10:04:06 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
// Generation of a probable prime of 2048 bits
2019-04-19 10:04:06 +00:00
const prime = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
2019-04-19 10:04:06 +00:00
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
2019-04-21 07:50:50 +00:00
// code if is prime
2019-04-19 07:42:28 +00:00
// Get a cryptographically secure random number between 1 and 2**256 bits.
2019-04-21 07:50:50 +00:00
const rnd = bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
2019-04-19 07:42:28 +00:00
```
From a browser, you can just load the module in a html page as:
```html
2019-04-21 07:50:50 +00:00
<script type="module">
import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
(async function () {
// Generation of a probable prime of 2018 bits
const p = await bigintCryptoUtils.prime(2048);
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
// Testing if a prime is a probable prime (Miller-Rabin)
const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
alert(p.toString() + '\nIs prime?\n' + isPrime);
2019-04-19 07:42:28 +00:00
2019-04-21 07:50:50 +00:00
// Get a cryptographically secure random number between 1 and 2**256 bits.
const rnd = bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
2019-04-21 07:50:50 +00:00
alert(rnd);
})();
</script>
2019-04-19 07:42:28 +00:00
```
2019-04-19 10:04:06 +00:00
# bigint-crypto-utils JS Doc
2019-04-19 07:42:28 +00:00
{{>main}}
2019-04-21 07:50:50 +00:00
* * *