"use strict";functionn(n){returnn>=0?n:-n}functione(n){if("number"==typeofn&&(n=BigInt(n)),1n===n)return1;lete=1;do{e++}while((n>>=1n)>1n);returne}functiont(n,e){if("number"==typeofn&&(n=BigInt(n)),"number"==typeofe&&(e=BigInt(e)),n<=0n||e<=0n)thrownewRangeError("a and b MUST be > 0");lett=0n,r=1n,o=1n,i=0n;for(;0n!==n;){constu=e/n,s=e%n,c=t-o*u,f=r-i*u;e=n,n=s,t=o,r=i,o=c,i=f}return{g:e,x:t,y:r}}functionr(n,e){if("number"==typeofn&&(n=BigInt(n)),"number"==typeofe&&(e=BigInt(e)),e<=0n)thrownewRangeError("n must be > 0");constt=n%e;returnt<0n?t+e:t}functiono(n,e){consto=t(r(n,e),e);if(1n!==o.g)thrownewRangeError(`${n.toString()} does not have inverse modulo ${e.toString()}`);returnr(o.x,e)}functioni(n,e,t){if(n.length!==e.length)thrownewRangeError("The remainders and modulos arrays should have the same length");consti=t??e.reduce(((n,e)=>n*e),1n);returne.reduce(((e,t,u)=>{consts=i/t;returnr(e+s*o(s,t)%i*n[u]%i,i)}),0n)}functionu(e,t){letr="number"==typeofe?BigInt(n(e)):n(e),o="number"==typeoft?BigInt(n(t)):n(t);if(0n===r)returno;if(0n===o)returnr;leti=0n;for(;0n===(1n&(r|o));)r>>=1n,o>>=1n,i++;for(;0n===(1n&r);)r>>=1n;do{for(;0n===(1n&o);)o>>=1n;if(r>o){constn=r;r=o,o=n}o-=r}while(0n!==o);returnr<<i}functions(n){returnn.map((n=>n[0]**(n[1]-1n)*(n[0]-1n))).reduce(((n,e)=>e*n),1n)}functionc(e,t,u,f){if("number"==typeofe&&(e=BigInt(e)),"number"==typeoft&&(t=BigInt(t)),"number"==typeofu&&(u=BigInt(u)),u<=0n)thrownewRangeError("n must be > 0");if(1n===u)return0n;if(e=r(e,u),t<0n)returno(c(e,n(t),u,f),u);if(void0!==f)returnfunction(n,e,t,r){consto=r.map((n=>n[0]**n[1])),u=r.map((n=>s([n]))),f=u.map(((t,r)=>c(n,e%t,o[r])));returni(f,o,t)}(e,t,u,function(n){conste={};returnn.forEach((n=>{if("bigint"==typeofn||"number"==typeofn){constt=String(n);void0===e[t]?e[t]={p:BigInt(n),k:1n}:e[t].k+=1n}else{constt=String(n[0]);void0===e[t]?e[t]={p:BigInt(n[0]),k:BigInt(n[1])}:e[t].k+=BigInt(n[1])}})),Object.values(e).map((n=>[n.p,n.k]))}(f));leta=1n;for(;t>0;)t%2n===1n&&(a=a*e%u),t/=2n,e=e**2n%u;returna}functionf(n){lete=0n;for(consttofn.values()){e=(e<<8n)+BigInt(t)}returne}vara=require("crypto");functiong(n,e=!1){if(n<1)thrownewRangeError("byteLength MUST be > 0");returnnewPromise((function(t,r){a.randomBytes(n,(function(n,o){null!==n&&r(n),e&&(o[0]=128|o[0]),t(o)}))}))}functionp(n,e=!1){if(n<1)thrownewRangeError("byteLength MUST be > 0");{constt=a.randomBytes(n);returne&&(t[0]=128|t[0]),t}}functiond(n,e=!1){if(n<1)thrownewRangeError("bitLength MUST be > 0");constt=Math.ceil(n/8),r=n%8;returnnewPromise(((n,o)=>{g(t,!1).then((function(t){if(0!==r&&(t[0]=t[0]&2**r-1),e){constn=0!==r?2**(r-1):128;t[0]=t[0]|n}n(t)}))}))}functionh(n,e=!1){if(n<1)thrownewRangeError("bitLength MUST be > 0");constt=p(Math.ceil(n/8),!1),r=n%8;if(0!==r&&(t[0]=t[0]&2**r-1),e){constn=0!==r?2**(r-1):128;t[0]=t[0]|n}returnt}functionl(n,t=1n){if(n<=t)thrownewRangeError("Arguments MUST be: max > min");constr=n-t,o=e(r);leti;do{i=f(h(o))}while(i>r);returni+t}letm=!1;try{require("worker_threads"),m=!0}catch(r){console.log("[bigint-crypto-utils] WARNING:\nThis node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers.\n · With Node >=11 it is enabled by default (consider upgrading).\n · With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker ")}functionb(n,e){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;constt=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,6