bigint-crypto-utils/lib/index.node.js

707 lines
17 KiB
JavaScript
Raw Normal View History

'use strict'
Object.defineProperty(exports, '__esModule', { value: true })
var bigintModArith = require('bigint-mod-arith')
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {number | bigint} w An integer to be tested for primality
* @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
2020-04-07 17:36:14 +00:00
* @returns {Promise<boolean>} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
2020-04-07 17:36:14 +00:00
function isProbablyPrime (w, iterations = 16) {
if (typeof w === 'number') {
w = BigInt(w)
}
/* eslint-disable no-lone-blocks */
{ // Node.js
if (_useWorkers) {
const { Worker } = require('worker_threads')
return new Promise((resolve, reject) => {
const worker = new Worker(__filename)
worker.on('message', (data) => {
worker.terminate()
resolve(data.isPrime)
})
worker.on('error', reject)
worker.postMessage({
rnd: w,
iterations: iterations,
id: 0
})
})
} else {
return new Promise((resolve) => {
resolve(_isProbablyPrime(w, iterations))
})
}
}
/* eslint-enable no-lone-blocks */
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise<bigint>} A promise that resolves to a bigint probable prime of bitLength bits.
*/
function prime (bitLength, iterations = 16) {
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
if (!_useWorkers) {
let rnd = 0n
do {
2020-04-07 17:41:29 +00:00
rnd = fromBuffer(randBitsSync(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))
return new Promise((resolve) => { resolve(rnd) })
}
return new Promise((resolve) => {
const workerList = []
const _onmessage = (msg, newWorker) => {
if (msg.isPrime) {
// if a prime number has been found, stop all the workers, and return it
for (let j = 0; j < workerList.length; j++) {
workerList[j].terminate()
}
while (workerList.length) {
workerList.pop()
}
resolve(msg.value)
} else { // if a composite is found, make the worker test another random number
2020-04-07 17:29:23 +00:00
const buf = randBitsSync(bitLength, true)
const rnd = fromBuffer(buf)
try {
newWorker.postMessage({
rnd: rnd,
iterations: iterations,
id: msg.id
})
} catch (error) {
// The worker has already terminated. There is nothing to handle here
}
}
}
/* eslint-disable no-lone-blocks */
{ // Node.js
const { cpus } = require('os')
const { Worker } = require('worker_threads')
for (let i = 0; i < cpus().length - 1; i++) {
const newWorker = new Worker(__filename)
newWorker.on('message', (msg) => _onmessage(msg, newWorker))
workerList.push(newWorker)
}
}
/* eslint-enable no-lone-blocks */
for (let i = 0; i < workerList.length; i++) {
2020-04-07 17:29:23 +00:00
const buf = randBitsSync(bitLength, true)
const rnd = fromBuffer(buf)
workerList[i].postMessage({
rnd: rnd,
iterations: iterations,
id: i
})
}
})
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {bigint} A bigint probable prime of bitLength bits.
*/
function primeSync (bitLength, iterations = 16) {
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
let rnd = 0n
do {
2020-04-07 17:41:29 +00:00
rnd = fromBuffer(randBitsSync(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))
return rnd
}
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} [min = BigInt(1)] Returned value will be >= min
*
* @returns {bigint} A cryptographically secure random bigint between [min,max]
*/
function randBetween (max, min = 1n) {
if (max <= min) throw new Error('max must be > min')
const interval = max - min
const bitLen = bigintModArith.bitLength(interval)
let rnd
do {
2020-04-07 17:29:23 +00:00
const buf = randBitsSync(bitLen)
rnd = fromBuffer(buf)
} while (rnd > interval)
return rnd + min
}
2020-04-07 17:29:23 +00:00
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A Promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
async function randBits (bitLength, forceLength = false) {
if (bitLength < 1) {
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
}
const byteLength = Math.ceil(bitLength / 8)
const bitLengthMod8 = bitLength % 8
const rndBytes = await randBytes(byteLength, false)
if (bitLengthMod8) {
// Fill with 0's the extra bits
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
}
if (forceLength) {
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
rndBytes[0] = rndBytes[0] | mask
}
return rndBytes
}
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
2020-04-07 17:29:23 +00:00
function randBitsSync (bitLength, forceLength = false) {
if (bitLength < 1) {
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
}
const byteLength = Math.ceil(bitLength / 8)
const rndBytes = randBytesSync(byteLength, false)
const bitLengthMod8 = bitLength % 8
if (bitLengthMod8) {
// Fill with 0's the extra bits
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
}
if (forceLength) {
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
rndBytes[0] = rndBytes[0] | mask
}
return rndBytes
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytes (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
/* eslint-disable no-lone-blocks */
{ // node
const crypto = require('crypto')
2020-04-07 17:29:23 +00:00
const buf = Buffer.alloc(byteLength)
return crypto.randomFill(buf, function (resolve) {
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) { buf[0] = buf[0] | 128 }
resolve(buf)
})
}
2020-04-07 17:29:23 +00:00
/* eslint-enable no-lone-blocks */
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytesSync (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
2020-04-07 17:29:23 +00:00
/* eslint-disable no-lone-blocks */
{ // node
const crypto = require('crypto')
2020-04-07 17:29:23 +00:00
const buf = Buffer.alloc(byteLength)
crypto.randomFillSync(buf)
2020-04-07 17:29:23 +00:00
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) { buf[0] = buf[0] | 128 }
return buf
}
2020-04-07 17:29:23 +00:00
/* eslint-enable no-lone-blocks */
}
/* HELPER FUNCTIONS */
function fromBuffer (buf) {
let ret = 0n
for (const i of buf.values()) {
const bi = BigInt(i)
ret = (ret << BigInt(8)) + bi
}
return ret
}
function _isProbablyPrime (w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === 2n) { return true } else if ((w & 1n) === 0n || w === 1n) { return false }
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3n,
5n,
7n,
11n,
13n,
17n,
19n,
23n,
29n,
31n,
37n,
41n,
43n,
47n,
53n,
59n,
61n,
67n,
71n,
73n,
79n,
83n,
89n,
97n,
101n,
103n,
107n,
109n,
113n,
127n,
131n,
137n,
139n,
149n,
151n,
157n,
163n,
167n,
173n,
179n,
181n,
191n,
193n,
197n,
199n,
211n,
223n,
227n,
229n,
233n,
239n,
241n,
251n,
257n,
263n,
269n,
271n,
277n,
281n,
283n,
293n,
307n,
311n,
313n,
317n,
331n,
337n,
347n,
349n,
353n,
359n,
367n,
373n,
379n,
383n,
389n,
397n,
401n,
409n,
419n,
421n,
431n,
433n,
439n,
443n,
449n,
457n,
461n,
463n,
467n,
479n,
487n,
491n,
499n,
503n,
509n,
521n,
523n,
541n,
547n,
557n,
563n,
569n,
571n,
577n,
587n,
593n,
599n,
601n,
607n,
613n,
617n,
619n,
631n,
641n,
643n,
647n,
653n,
659n,
661n,
673n,
677n,
683n,
691n,
701n,
709n,
719n,
727n,
733n,
739n,
743n,
751n,
757n,
761n,
769n,
773n,
787n,
797n,
809n,
811n,
821n,
823n,
827n,
829n,
839n,
853n,
857n,
859n,
863n,
877n,
881n,
883n,
887n,
907n,
911n,
919n,
929n,
937n,
941n,
947n,
953n,
967n,
971n,
977n,
983n,
991n,
997n,
1009n,
1013n,
1019n,
1021n,
1031n,
1033n,
1039n,
1049n,
1051n,
1061n,
1063n,
1069n,
1087n,
1091n,
1093n,
1097n,
1103n,
1109n,
1117n,
1123n,
1129n,
1151n,
1153n,
1163n,
1171n,
1181n,
1187n,
1193n,
1201n,
1213n,
1217n,
1223n,
1229n,
1231n,
1237n,
1249n,
1259n,
1277n,
1279n,
1283n,
1289n,
1291n,
1297n,
1301n,
1303n,
1307n,
1319n,
1321n,
1327n,
1361n,
1367n,
1373n,
1381n,
1399n,
1409n,
1423n,
1427n,
1429n,
1433n,
1439n,
1447n,
1451n,
1453n,
1459n,
1471n,
1481n,
1483n,
1487n,
1489n,
1493n,
1499n,
1511n,
1523n,
1531n,
1543n,
1549n,
1553n,
1559n,
1567n,
1571n,
1579n,
1583n,
1597n
]
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
const p = firstPrimes[i]
if (w === p) {
return true
} else if (w % p === 0n) {
return false
}
}
/*
1. Let a be the largest integer such that 2**a divides w1.
2. m = (w1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w1.
4.2 If ((b 1) or (b w1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.
4.5 For j = 1 to a 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = 0n
const d = w - 1n
let aux = d
while (aux % 2n === 0n) {
aux /= 2n
++a
}
const m = d / (2n ** a)
// /* eslint-disable no-labels */
// loop: do {
// const b = randBetween(w - 1n, 2n)
// let z = modPow(b, m, w)
// if (z === 1n || z === w - 1n) { continue }
// for (let j = 1; j < a; j++) {
// z = modPow(z, 2n, w)
// if (z === w - 1n) { continue loop }
// if (z === 1n) { break }
// }
// return false
// } while (--iterations)
// /* eslint-enable no-labels */
// return true
do {
const b = randBetween(d, 2n)
let z = bigintModArith.modPow(b, m, w)
if (z === 1n || z === d) { continue }
let j = 1
while (j < a) {
z = bigintModArith.modPow(z, 2n, w)
if (z === d) { break }
if (z === 1n) { return false }
j++
}
if (z !== d) {
return false
}
} while (--iterations)
return true
}
let _useWorkers = true // The following is just to check whether Node.js can use workers
2020-04-07 17:29:23 +00:00
/* eslint-disable no-lone-blocks */
{ // Node.js
_useWorkers = (function _workers () {
try {
require.resolve('worker_threads')
return true
} catch (e) {
console.log(`[bigint-crypto-utils] WARNING:
This node version doesn't support worker_threads. You should enable them in order to greatly speedup the generation of big prime numbers.
· With Node >=11 it is enabled by default (consider upgrading).
· With Node 10, starting with 10.5.0, you can enable worker_threads at runtime executing node --experimental-worker `)
return false
}
})()
}
2020-04-07 17:29:23 +00:00
/* eslint-enable no-lone-blocks */
if (_useWorkers) { // node.js with support for workers
const { parentPort, isMainThread } = require('worker_threads')
if (!isMainThread) { // worker
parentPort.on('message', function (data) { // Let's start once we are called
// data = {rnd: <bigint>, iterations: <number>}
const isPrime = _isProbablyPrime(data.rnd, data.iterations)
parentPort.postMessage({
isPrime: isPrime,
value: data.rnd,
id: data.id
})
})
}
}
Object.defineProperty(exports, 'abs', {
enumerable: true,
get: function () {
return bigintModArith.abs
}
})
Object.defineProperty(exports, 'bitLength', {
enumerable: true,
get: function () {
return bigintModArith.bitLength
}
})
Object.defineProperty(exports, 'eGcd', {
enumerable: true,
get: function () {
return bigintModArith.eGcd
}
})
Object.defineProperty(exports, 'gcd', {
enumerable: true,
get: function () {
return bigintModArith.gcd
}
})
Object.defineProperty(exports, 'lcm', {
enumerable: true,
get: function () {
return bigintModArith.lcm
}
})
Object.defineProperty(exports, 'max', {
enumerable: true,
get: function () {
return bigintModArith.max
}
})
Object.defineProperty(exports, 'min', {
enumerable: true,
get: function () {
return bigintModArith.min
}
})
Object.defineProperty(exports, 'modInv', {
enumerable: true,
get: function () {
return bigintModArith.modInv
}
})
Object.defineProperty(exports, 'modPow', {
enumerable: true,
get: function () {
return bigintModArith.modPow
}
})
Object.defineProperty(exports, 'toZn', {
enumerable: true,
get: function () {
return bigintModArith.toZn
}
})
exports.isProbablyPrime = isProbablyPrime
exports.prime = prime
exports.primeSync = primeSync
exports.randBetween = randBetween
exports.randBits = randBits
2020-04-07 17:29:23 +00:00
exports.randBitsSync = randBitsSync
exports.randBytes = randBytes
exports.randBytesSync = randBytesSync