853 lines
43 KiB
JavaScript
853 lines
43 KiB
JavaScript
|
/**
|
|||
|
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
|
|||
|
*
|
|||
|
* @param a
|
|||
|
*
|
|||
|
* @returns The absolute value of a
|
|||
|
*/
|
|||
|
function abs(a) {
|
|||
|
return (a >= 0) ? a : -a;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Returns the bitlength of a number
|
|||
|
*
|
|||
|
* @param a
|
|||
|
* @returns The bit length
|
|||
|
*/
|
|||
|
function bitLength(a) {
|
|||
|
if (typeof a === 'number')
|
|||
|
a = BigInt(a);
|
|||
|
if (a === 1n) {
|
|||
|
return 1;
|
|||
|
}
|
|||
|
let bits = 1;
|
|||
|
do {
|
|||
|
bits++;
|
|||
|
} while ((a >>= 1n) > 1n);
|
|||
|
return bits;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
|
|||
|
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|||
|
*
|
|||
|
* @param a
|
|||
|
* @param b
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* This excepction is thrown if a or b are less than 0
|
|||
|
*
|
|||
|
* @returns A triple (g, x, y), such that ax + by = g = gcd(a, b).
|
|||
|
*/
|
|||
|
function eGcd(a, b) {
|
|||
|
if (typeof a === 'number')
|
|||
|
a = BigInt(a);
|
|||
|
if (typeof b === 'number')
|
|||
|
b = BigInt(b);
|
|||
|
if (a <= 0n || b <= 0n)
|
|||
|
throw new RangeError('a and b MUST be > 0'); // a and b MUST be positive
|
|||
|
let x = 0n;
|
|||
|
let y = 1n;
|
|||
|
let u = 1n;
|
|||
|
let v = 0n;
|
|||
|
while (a !== 0n) {
|
|||
|
const q = b / a;
|
|||
|
const r = b % a;
|
|||
|
const m = x - (u * q);
|
|||
|
const n = y - (v * q);
|
|||
|
b = a;
|
|||
|
a = r;
|
|||
|
x = u;
|
|||
|
y = v;
|
|||
|
u = m;
|
|||
|
v = n;
|
|||
|
}
|
|||
|
return {
|
|||
|
g: b,
|
|||
|
x: x,
|
|||
|
y: y
|
|||
|
};
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Greatest-common divisor of two integers based on the iterative binary algorithm.
|
|||
|
*
|
|||
|
* @param a
|
|||
|
* @param b
|
|||
|
*
|
|||
|
* @returns The greatest common divisor of a and b
|
|||
|
*/
|
|||
|
function gcd(a, b) {
|
|||
|
let aAbs = (typeof a === 'number') ? BigInt(abs(a)) : abs(a);
|
|||
|
let bAbs = (typeof b === 'number') ? BigInt(abs(b)) : abs(b);
|
|||
|
if (aAbs === 0n) {
|
|||
|
return bAbs;
|
|||
|
}
|
|||
|
else if (bAbs === 0n) {
|
|||
|
return aAbs;
|
|||
|
}
|
|||
|
let shift = 0n;
|
|||
|
while (((aAbs | bAbs) & 1n) === 0n) {
|
|||
|
aAbs >>= 1n;
|
|||
|
bAbs >>= 1n;
|
|||
|
shift++;
|
|||
|
}
|
|||
|
while ((aAbs & 1n) === 0n)
|
|||
|
aAbs >>= 1n;
|
|||
|
do {
|
|||
|
while ((bAbs & 1n) === 0n)
|
|||
|
bAbs >>= 1n;
|
|||
|
if (aAbs > bAbs) {
|
|||
|
const x = aAbs;
|
|||
|
aAbs = bAbs;
|
|||
|
bAbs = x;
|
|||
|
}
|
|||
|
bAbs -= aAbs;
|
|||
|
} while (bAbs !== 0n);
|
|||
|
// rescale
|
|||
|
return aAbs << shift;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* The least common multiple computed as abs(a*b)/gcd(a,b)
|
|||
|
* @param a
|
|||
|
* @param b
|
|||
|
*
|
|||
|
* @returns The least common multiple of a and b
|
|||
|
*/
|
|||
|
function lcm(a, b) {
|
|||
|
if (typeof a === 'number')
|
|||
|
a = BigInt(a);
|
|||
|
if (typeof b === 'number')
|
|||
|
b = BigInt(b);
|
|||
|
if (a === 0n && b === 0n)
|
|||
|
return BigInt(0);
|
|||
|
return abs(a * b) / gcd(a, b);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
|
|||
|
*
|
|||
|
* @param a
|
|||
|
* @param b
|
|||
|
*
|
|||
|
* @returns Maximum of numbers a and b
|
|||
|
*/
|
|||
|
function max(a, b) {
|
|||
|
return (a >= b) ? a : b;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
|
|||
|
*
|
|||
|
* @param a
|
|||
|
* @param b
|
|||
|
*
|
|||
|
* @returns Minimum of numbers a and b
|
|||
|
*/
|
|||
|
function min(a, b) {
|
|||
|
return (a >= b) ? b : a;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Finds the smallest positive element that is congruent to a in modulo n
|
|||
|
*
|
|||
|
* @remarks
|
|||
|
* a and b must be the same type, either number or bigint
|
|||
|
*
|
|||
|
* @param a - An integer
|
|||
|
* @param n - The modulo
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* Excpeption thrown when n is not > 0
|
|||
|
*
|
|||
|
* @returns A bigint with the smallest positive representation of a modulo n
|
|||
|
*/
|
|||
|
function toZn(a, n) {
|
|||
|
if (typeof a === 'number')
|
|||
|
a = BigInt(a);
|
|||
|
if (typeof n === 'number')
|
|||
|
n = BigInt(n);
|
|||
|
if (n <= 0n) {
|
|||
|
throw new RangeError('n must be > 0');
|
|||
|
}
|
|||
|
const aZn = a % n;
|
|||
|
return (aZn < 0n) ? aZn + n : aZn;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Modular inverse.
|
|||
|
*
|
|||
|
* @param a The number to find an inverse for
|
|||
|
* @param n The modulo
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* Excpeption thorwn when a does not have inverse modulo n
|
|||
|
*
|
|||
|
* @returns The inverse modulo n
|
|||
|
*/
|
|||
|
function modInv(a, n) {
|
|||
|
const egcd = eGcd(toZn(a, n), n);
|
|||
|
if (egcd.g !== 1n) {
|
|||
|
throw new RangeError(`${a.toString()} does not have inverse modulo ${n.toString()}`); // modular inverse does not exist
|
|||
|
}
|
|||
|
else {
|
|||
|
return toZn(egcd.x, n);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
|
|||
|
*
|
|||
|
* @param b base
|
|||
|
* @param e exponent
|
|||
|
* @param n modulo
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* Excpeption thrown when n is not > 0
|
|||
|
*
|
|||
|
* @returns b**e mod n
|
|||
|
*/
|
|||
|
function modPow(b, e, n) {
|
|||
|
if (typeof b === 'number')
|
|||
|
b = BigInt(b);
|
|||
|
if (typeof e === 'number')
|
|||
|
e = BigInt(e);
|
|||
|
if (typeof n === 'number')
|
|||
|
n = BigInt(n);
|
|||
|
if (n <= 0n) {
|
|||
|
throw new RangeError('n must be > 0');
|
|||
|
}
|
|||
|
else if (n === 1n) {
|
|||
|
return 0n;
|
|||
|
}
|
|||
|
b = toZn(b, n);
|
|||
|
if (e < 0n) {
|
|||
|
return modInv(modPow(b, abs(e), n), n);
|
|||
|
}
|
|||
|
let r = 1n;
|
|||
|
while (e > 0) {
|
|||
|
if ((e % 2n) === 1n) {
|
|||
|
r = r * b % n;
|
|||
|
}
|
|||
|
e = e / 2n;
|
|||
|
b = b ** 2n % n;
|
|||
|
}
|
|||
|
return r;
|
|||
|
}
|
|||
|
|
|||
|
function fromBuffer(buf) {
|
|||
|
let ret = 0n;
|
|||
|
for (const i of buf.values()) {
|
|||
|
const bi = BigInt(i);
|
|||
|
ret = (ret << 8n) + bi;
|
|||
|
}
|
|||
|
return ret;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Secure random bytes for both node and browsers. Node version uses crypto.randomBytes() and browser one self.crypto.getRandomValues()
|
|||
|
*
|
|||
|
* @param byteLength - The desired number of random bytes
|
|||
|
* @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* byteLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
|||
|
*/
|
|||
|
function randBytes(byteLength, forceLength = false) {
|
|||
|
if (byteLength < 1)
|
|||
|
throw new RangeError('byteLength MUST be > 0');
|
|||
|
return new Promise(function (resolve, reject) {
|
|||
|
{ // browser
|
|||
|
const buf = new Uint8Array(byteLength);
|
|||
|
self.crypto.getRandomValues(buf);
|
|||
|
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
|||
|
if (forceLength)
|
|||
|
buf[0] = buf[0] | 128;
|
|||
|
resolve(buf);
|
|||
|
}
|
|||
|
});
|
|||
|
}
|
|||
|
/**
|
|||
|
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|||
|
*
|
|||
|
* @param byteLength - The desired number of random bytes
|
|||
|
* @param forceLength - If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* byteLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bytes
|
|||
|
*/
|
|||
|
function randBytesSync(byteLength, forceLength = false) {
|
|||
|
if (byteLength < 1)
|
|||
|
throw new RangeError('byteLength MUST be > 0');
|
|||
|
/* eslint-disable no-lone-blocks */
|
|||
|
{ // browser
|
|||
|
const buf = new Uint8Array(byteLength);
|
|||
|
self.crypto.getRandomValues(buf);
|
|||
|
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
|
|||
|
if (forceLength)
|
|||
|
buf[0] = buf[0] | 128;
|
|||
|
return buf;
|
|||
|
}
|
|||
|
/* eslint-enable no-lone-blocks */
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|||
|
*
|
|||
|
* @param bitLength - The desired number of random bits
|
|||
|
* @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* bitLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A Promise that resolves to a UInt8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
|||
|
*/
|
|||
|
function randBits(bitLength, forceLength = false) {
|
|||
|
if (bitLength < 1)
|
|||
|
throw new RangeError('bitLength MUST be > 0');
|
|||
|
const byteLength = Math.ceil(bitLength / 8);
|
|||
|
const bitLengthMod8 = bitLength % 8;
|
|||
|
return new Promise((resolve, reject) => {
|
|||
|
randBytes(byteLength, false).then(function (rndBytes) {
|
|||
|
if (bitLengthMod8 !== 0) {
|
|||
|
// Fill with 0's the extra bits
|
|||
|
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1);
|
|||
|
}
|
|||
|
if (forceLength) {
|
|||
|
const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128;
|
|||
|
rndBytes[0] = rndBytes[0] | mask;
|
|||
|
}
|
|||
|
resolve(rndBytes);
|
|||
|
});
|
|||
|
});
|
|||
|
}
|
|||
|
/**
|
|||
|
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
|
|||
|
* @param bitLength - The desired number of random bits
|
|||
|
* @param forceLength - If we want to force the output to have a specific bit length. It basically forces the msb to be 1
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* bitLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A Uint8Array/Buffer (Browser/Node.js) filled with cryptographically secure random bits
|
|||
|
*/
|
|||
|
function randBitsSync(bitLength, forceLength = false) {
|
|||
|
if (bitLength < 1)
|
|||
|
throw new RangeError('bitLength MUST be > 0');
|
|||
|
const byteLength = Math.ceil(bitLength / 8);
|
|||
|
const rndBytes = randBytesSync(byteLength, false);
|
|||
|
const bitLengthMod8 = bitLength % 8;
|
|||
|
if (bitLengthMod8 !== 0) {
|
|||
|
// Fill with 0's the extra bits
|
|||
|
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1);
|
|||
|
}
|
|||
|
if (forceLength) {
|
|||
|
const mask = (bitLengthMod8 !== 0) ? 2 ** (bitLengthMod8 - 1) : 128;
|
|||
|
rndBytes[0] = rndBytes[0] | mask;
|
|||
|
}
|
|||
|
return rndBytes;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Returns a cryptographically secure random integer between [min,max]. Both numbers must be >=0
|
|||
|
* @param max Returned value will be <= max
|
|||
|
* @param min Returned value will be >= min
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* Arguments MUST be: max > 0 && min >=0 && max > min
|
|||
|
*
|
|||
|
* @returns A cryptographically secure random bigint between [min,max]
|
|||
|
*/
|
|||
|
function randBetween(max, min = 1n) {
|
|||
|
if (max <= 0n || min < 0n || max <= min)
|
|||
|
throw new RangeError('Arguments MUST be: max > 0 && min >=0 && max > min');
|
|||
|
const interval = max - min;
|
|||
|
const bitLen = bitLength(interval);
|
|||
|
let rnd;
|
|||
|
do {
|
|||
|
const buf = randBitsSync(bitLen);
|
|||
|
rnd = fromBuffer(buf);
|
|||
|
} while (rnd > interval);
|
|||
|
return rnd + min;
|
|||
|
}
|
|||
|
|
|||
|
function _workerUrl(workerCode) {
|
|||
|
workerCode = `(() => {${workerCode}})()`; // encapsulate IIFE
|
|||
|
const _blob = new Blob([workerCode], { type: 'text/javascript' });
|
|||
|
return window.URL.createObjectURL(_blob);
|
|||
|
}
|
|||
|
let _useWorkers = false; // The following is just to check whether we can use workers
|
|||
|
/* eslint-disable no-lone-blocks */
|
|||
|
{ // Native JS
|
|||
|
if (self.Worker !== undefined)
|
|||
|
_useWorkers = true;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
|
|||
|
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
|
|||
|
*
|
|||
|
* @param w - A positive integer to be tested for primality
|
|||
|
* @param iterations - The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
|
|||
|
* @param disableWorkers - Disable the use of workers for the primality test
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* w MUST be >= 0
|
|||
|
*
|
|||
|
* @returns A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
|
|||
|
*/
|
|||
|
function isProbablyPrime(w, iterations = 16, disableWorkers = false) {
|
|||
|
if (typeof w === 'number') {
|
|||
|
w = BigInt(w);
|
|||
|
}
|
|||
|
if (w < 0n)
|
|||
|
throw RangeError('w MUST be >= 0');
|
|||
|
{ // browser
|
|||
|
return new Promise((resolve, reject) => {
|
|||
|
const worker = new Worker(_isProbablyPrimeWorkerUrl());
|
|||
|
worker.onmessage = (event) => {
|
|||
|
worker.terminate();
|
|||
|
resolve(event.data.isPrime);
|
|||
|
};
|
|||
|
worker.onmessageerror = (event) => {
|
|||
|
reject(event);
|
|||
|
};
|
|||
|
const msg = {
|
|||
|
rnd: w,
|
|||
|
iterations: iterations,
|
|||
|
id: 0
|
|||
|
};
|
|||
|
worker.postMessage(msg);
|
|||
|
});
|
|||
|
}
|
|||
|
}
|
|||
|
function _isProbablyPrime(w, iterations) {
|
|||
|
/*
|
|||
|
PREFILTERING. Even values but 2 are not primes, so don't test.
|
|||
|
1 is not a prime and the M-R algorithm needs w>1.
|
|||
|
*/
|
|||
|
if (w === 2n)
|
|||
|
return true;
|
|||
|
else if ((w & 1n) === 0n || w === 1n)
|
|||
|
return false;
|
|||
|
/*
|
|||
|
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
|
|||
|
*/
|
|||
|
const firstPrimes = [
|
|||
|
3n,
|
|||
|
5n,
|
|||
|
7n,
|
|||
|
11n,
|
|||
|
13n,
|
|||
|
17n,
|
|||
|
19n,
|
|||
|
23n,
|
|||
|
29n,
|
|||
|
31n,
|
|||
|
37n,
|
|||
|
41n,
|
|||
|
43n,
|
|||
|
47n,
|
|||
|
53n,
|
|||
|
59n,
|
|||
|
61n,
|
|||
|
67n,
|
|||
|
71n,
|
|||
|
73n,
|
|||
|
79n,
|
|||
|
83n,
|
|||
|
89n,
|
|||
|
97n,
|
|||
|
101n,
|
|||
|
103n,
|
|||
|
107n,
|
|||
|
109n,
|
|||
|
113n,
|
|||
|
127n,
|
|||
|
131n,
|
|||
|
137n,
|
|||
|
139n,
|
|||
|
149n,
|
|||
|
151n,
|
|||
|
157n,
|
|||
|
163n,
|
|||
|
167n,
|
|||
|
173n,
|
|||
|
179n,
|
|||
|
181n,
|
|||
|
191n,
|
|||
|
193n,
|
|||
|
197n,
|
|||
|
199n,
|
|||
|
211n,
|
|||
|
223n,
|
|||
|
227n,
|
|||
|
229n,
|
|||
|
233n,
|
|||
|
239n,
|
|||
|
241n,
|
|||
|
251n,
|
|||
|
257n,
|
|||
|
263n,
|
|||
|
269n,
|
|||
|
271n,
|
|||
|
277n,
|
|||
|
281n,
|
|||
|
283n,
|
|||
|
293n,
|
|||
|
307n,
|
|||
|
311n,
|
|||
|
313n,
|
|||
|
317n,
|
|||
|
331n,
|
|||
|
337n,
|
|||
|
347n,
|
|||
|
349n,
|
|||
|
353n,
|
|||
|
359n,
|
|||
|
367n,
|
|||
|
373n,
|
|||
|
379n,
|
|||
|
383n,
|
|||
|
389n,
|
|||
|
397n,
|
|||
|
401n,
|
|||
|
409n,
|
|||
|
419n,
|
|||
|
421n,
|
|||
|
431n,
|
|||
|
433n,
|
|||
|
439n,
|
|||
|
443n,
|
|||
|
449n,
|
|||
|
457n,
|
|||
|
461n,
|
|||
|
463n,
|
|||
|
467n,
|
|||
|
479n,
|
|||
|
487n,
|
|||
|
491n,
|
|||
|
499n,
|
|||
|
503n,
|
|||
|
509n,
|
|||
|
521n,
|
|||
|
523n,
|
|||
|
541n,
|
|||
|
547n,
|
|||
|
557n,
|
|||
|
563n,
|
|||
|
569n,
|
|||
|
571n,
|
|||
|
577n,
|
|||
|
587n,
|
|||
|
593n,
|
|||
|
599n,
|
|||
|
601n,
|
|||
|
607n,
|
|||
|
613n,
|
|||
|
617n,
|
|||
|
619n,
|
|||
|
631n,
|
|||
|
641n,
|
|||
|
643n,
|
|||
|
647n,
|
|||
|
653n,
|
|||
|
659n,
|
|||
|
661n,
|
|||
|
673n,
|
|||
|
677n,
|
|||
|
683n,
|
|||
|
691n,
|
|||
|
701n,
|
|||
|
709n,
|
|||
|
719n,
|
|||
|
727n,
|
|||
|
733n,
|
|||
|
739n,
|
|||
|
743n,
|
|||
|
751n,
|
|||
|
757n,
|
|||
|
761n,
|
|||
|
769n,
|
|||
|
773n,
|
|||
|
787n,
|
|||
|
797n,
|
|||
|
809n,
|
|||
|
811n,
|
|||
|
821n,
|
|||
|
823n,
|
|||
|
827n,
|
|||
|
829n,
|
|||
|
839n,
|
|||
|
853n,
|
|||
|
857n,
|
|||
|
859n,
|
|||
|
863n,
|
|||
|
877n,
|
|||
|
881n,
|
|||
|
883n,
|
|||
|
887n,
|
|||
|
907n,
|
|||
|
911n,
|
|||
|
919n,
|
|||
|
929n,
|
|||
|
937n,
|
|||
|
941n,
|
|||
|
947n,
|
|||
|
953n,
|
|||
|
967n,
|
|||
|
971n,
|
|||
|
977n,
|
|||
|
983n,
|
|||
|
991n,
|
|||
|
997n,
|
|||
|
1009n,
|
|||
|
1013n,
|
|||
|
1019n,
|
|||
|
1021n,
|
|||
|
1031n,
|
|||
|
1033n,
|
|||
|
1039n,
|
|||
|
1049n,
|
|||
|
1051n,
|
|||
|
1061n,
|
|||
|
1063n,
|
|||
|
1069n,
|
|||
|
1087n,
|
|||
|
1091n,
|
|||
|
1093n,
|
|||
|
1097n,
|
|||
|
1103n,
|
|||
|
1109n,
|
|||
|
1117n,
|
|||
|
1123n,
|
|||
|
1129n,
|
|||
|
1151n,
|
|||
|
1153n,
|
|||
|
1163n,
|
|||
|
1171n,
|
|||
|
1181n,
|
|||
|
1187n,
|
|||
|
1193n,
|
|||
|
1201n,
|
|||
|
1213n,
|
|||
|
1217n,
|
|||
|
1223n,
|
|||
|
1229n,
|
|||
|
1231n,
|
|||
|
1237n,
|
|||
|
1249n,
|
|||
|
1259n,
|
|||
|
1277n,
|
|||
|
1279n,
|
|||
|
1283n,
|
|||
|
1289n,
|
|||
|
1291n,
|
|||
|
1297n,
|
|||
|
1301n,
|
|||
|
1303n,
|
|||
|
1307n,
|
|||
|
1319n,
|
|||
|
1321n,
|
|||
|
1327n,
|
|||
|
1361n,
|
|||
|
1367n,
|
|||
|
1373n,
|
|||
|
1381n,
|
|||
|
1399n,
|
|||
|
1409n,
|
|||
|
1423n,
|
|||
|
1427n,
|
|||
|
1429n,
|
|||
|
1433n,
|
|||
|
1439n,
|
|||
|
1447n,
|
|||
|
1451n,
|
|||
|
1453n,
|
|||
|
1459n,
|
|||
|
1471n,
|
|||
|
1481n,
|
|||
|
1483n,
|
|||
|
1487n,
|
|||
|
1489n,
|
|||
|
1493n,
|
|||
|
1499n,
|
|||
|
1511n,
|
|||
|
1523n,
|
|||
|
1531n,
|
|||
|
1543n,
|
|||
|
1549n,
|
|||
|
1553n,
|
|||
|
1559n,
|
|||
|
1567n,
|
|||
|
1571n,
|
|||
|
1579n,
|
|||
|
1583n,
|
|||
|
1597n
|
|||
|
];
|
|||
|
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
|
|||
|
const p = firstPrimes[i];
|
|||
|
if (w === p)
|
|||
|
return true;
|
|||
|
else if (w % p === 0n)
|
|||
|
return false;
|
|||
|
}
|
|||
|
/*
|
|||
|
1. Let a be the largest integer such that 2**a divides w−1.
|
|||
|
2. m = (w−1) / 2**a.
|
|||
|
3. wlen = len (w).
|
|||
|
4. For i = 1 to iterations do
|
|||
|
4.1 Obtain a string b of wlen bits from an RBG.
|
|||
|
Comment: Ensure that 1 < b < w−1.
|
|||
|
4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.
|
|||
|
4.3 z = b**m mod w.
|
|||
|
4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.
|
|||
|
4.5 For j = 1 to a − 1 do.
|
|||
|
4.5.1 z = z**2 mod w.
|
|||
|
4.5.2 If (z = w−1), then go to step 4.7.
|
|||
|
4.5.3 If (z = 1), then go to step 4.6.
|
|||
|
4.6 Return COMPOSITE.
|
|||
|
4.7 Continue.
|
|||
|
Comment: Increment i for the do-loop in step 4.
|
|||
|
5. Return PROBABLY PRIME.
|
|||
|
*/
|
|||
|
let a = 0n;
|
|||
|
const d = w - 1n;
|
|||
|
let aux = d;
|
|||
|
while (aux % 2n === 0n) {
|
|||
|
aux /= 2n;
|
|||
|
++a;
|
|||
|
}
|
|||
|
const m = d / (2n ** a);
|
|||
|
do {
|
|||
|
const b = randBetween(d, 2n);
|
|||
|
let z = modPow(b, m, w);
|
|||
|
if (z === 1n || z === d)
|
|||
|
continue;
|
|||
|
let j = 1;
|
|||
|
while (j < a) {
|
|||
|
z = modPow(z, 2n, w);
|
|||
|
if (z === d)
|
|||
|
break;
|
|||
|
if (z === 1n)
|
|||
|
return false;
|
|||
|
j++;
|
|||
|
}
|
|||
|
if (z !== d)
|
|||
|
return false;
|
|||
|
} while (--iterations !== 0);
|
|||
|
return true;
|
|||
|
}
|
|||
|
function _isProbablyPrimeWorkerUrl() {
|
|||
|
// Let's us first add all the required functions
|
|||
|
let workerCode = `'use strict';const ${eGcd.name}=${eGcd.toString()};const ${modInv.name}=${modInv.toString()};const ${modPow.name}=${modPow.toString()};const ${toZn.name}=${toZn.toString()};const ${randBitsSync.name}=${randBitsSync.toString()};const ${randBytesSync.name}=${randBytesSync.toString()};const ${randBetween.name}=${randBetween.toString()};const ${isProbablyPrime.name}=${_isProbablyPrime.toString()};${bitLength.toString()};${fromBuffer.toString()};`;
|
|||
|
workerCode += `onmessage=async function(e){const m={isPrime:await ${isProbablyPrime.name}(e.data.rnd,e.data.iterations),value:e.data.rnd,id:e.data.id};postMessage(m);}`;
|
|||
|
return _workerUrl(workerCode);
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|||
|
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
|
|||
|
* main process, and it can be much faster (if several cores or cpu are available).
|
|||
|
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
|
|||
|
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
|
|||
|
*
|
|||
|
* @param bitLength - The required bit length for the generated prime
|
|||
|
* @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* bitLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A promise that resolves to a bigint probable prime of bitLength bits.
|
|||
|
*/
|
|||
|
function prime(bitLength, iterations = 16) {
|
|||
|
if (bitLength < 1)
|
|||
|
throw new RangeError('bitLength MUST be > 0');
|
|||
|
/* istanbul ignore if */
|
|||
|
if (!_useWorkers) { // If there is no support for workers
|
|||
|
let rnd = 0n;
|
|||
|
do {
|
|||
|
rnd = fromBuffer(randBitsSync(bitLength, true));
|
|||
|
} while (!_isProbablyPrime(rnd, iterations));
|
|||
|
return new Promise((resolve) => { resolve(rnd); });
|
|||
|
}
|
|||
|
return new Promise((resolve, reject) => {
|
|||
|
const workerList = [];
|
|||
|
const _onmessage = (msg, newWorker) => {
|
|||
|
if (msg.isPrime) {
|
|||
|
// if a prime number has been found, stop all the workers, and return it
|
|||
|
for (let j = 0; j < workerList.length; j++) {
|
|||
|
workerList[j].terminate();
|
|||
|
}
|
|||
|
while (workerList.length > 0) {
|
|||
|
workerList.pop();
|
|||
|
}
|
|||
|
resolve(msg.value);
|
|||
|
}
|
|||
|
else { // if a composite is found, make the worker test another random number
|
|||
|
const buf = randBitsSync(bitLength, true);
|
|||
|
const rnd = fromBuffer(buf);
|
|||
|
try {
|
|||
|
const msgToWorker = {
|
|||
|
rnd: rnd,
|
|||
|
iterations: iterations,
|
|||
|
id: msg.id
|
|||
|
};
|
|||
|
newWorker.postMessage(msgToWorker);
|
|||
|
}
|
|||
|
catch (error) {
|
|||
|
// The worker has already terminated. There is nothing to handle here
|
|||
|
}
|
|||
|
}
|
|||
|
};
|
|||
|
{ // browser
|
|||
|
const workerURL = _isProbablyPrimeWorkerUrl();
|
|||
|
for (let i = 0; i < self.navigator.hardwareConcurrency - 1; i++) {
|
|||
|
const newWorker = new Worker(workerURL);
|
|||
|
newWorker.onmessage = (event) => _onmessage(event.data, newWorker);
|
|||
|
workerList.push(newWorker);
|
|||
|
}
|
|||
|
}
|
|||
|
for (let i = 0; i < workerList.length; i++) {
|
|||
|
randBits(bitLength, true).then(function (buf) {
|
|||
|
const rnd = fromBuffer(buf);
|
|||
|
workerList[i].postMessage({
|
|||
|
rnd: rnd,
|
|||
|
iterations: iterations,
|
|||
|
id: i
|
|||
|
});
|
|||
|
}).catch(reject);
|
|||
|
}
|
|||
|
});
|
|||
|
}
|
|||
|
/**
|
|||
|
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
|
|||
|
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
|
|||
|
*
|
|||
|
* @param bitLength - The required bit length for the generated prime
|
|||
|
* @param iterations - The number of iterations for the Miller-Rabin Probabilistic Primality Test
|
|||
|
*
|
|||
|
* @throws {RangeError}
|
|||
|
* bitLength MUST be > 0
|
|||
|
*
|
|||
|
* @returns A bigint probable prime of bitLength bits.
|
|||
|
*/
|
|||
|
function primeSync(bitLength, iterations = 16) {
|
|||
|
if (bitLength < 1)
|
|||
|
throw new RangeError('bitLength MUST be > 0');
|
|||
|
let rnd = 0n;
|
|||
|
do {
|
|||
|
rnd = fromBuffer(randBitsSync(bitLength, true));
|
|||
|
} while (!_isProbablyPrime(rnd, iterations));
|
|||
|
return rnd;
|
|||
|
}
|
|||
|
|
|||
|
export { abs, bitLength, eGcd, gcd, isProbablyPrime, lcm, max, min, modInv, modPow, prime, primeSync, randBetween, randBits, randBitsSync, randBytes, randBytesSync, toZn };
|
|||
|
//# sourceMappingURL=data:application/json;charset=utf-8;base64,eyJ2ZXJzaW9uIjozLCJmaWxlIjoiaW5kZXguYnJvd3Nlci5qcyIsInNvdXJjZXMiOlsiLi4vLi4vbm9kZV9tb2R1bGVzL2JpZ2ludC1tb2QtYXJpdGgvZGlzdC9lc20vaW5kZXguYnJvd3Nlci5qcyIsIi4uLy4uL3NyYy90cy9mcm9tQnVmZmVyLnRzIiwiLi4vLi4vc3JjL3RzL3JhbmRCeXRlcy50cyIsIi4uLy4uL3NyYy90cy9yYW5kQml0cy50cyIsIi4uLy4uL3NyYy90cy9yYW5kQmV0d2Vlbi50cyIsIi4uLy4uL3NyYy90cy93b3JrZXJVdGlscy50cyIsIi4uLy4uL3NyYy90cy9pc1Byb2JhYmx5UHJpbWUudHMiLCIuLi8uLi9zcmMvdHMvcHJpbWUudHMiXSwic291cmNlc0NvbnRlbnQiOm51bGwsIm5hbWVzIjpbXSwibWFwcGluZ3MiOiJBQUFBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxHQUFHLENBQUMsQ0FBQyxFQUFFO0FBQ2hCLElBQUksT0FBTyxDQUFDLENBQUMsSUFBSSxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDO0FBQzdCLENBQUM7QUFDRDtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBLFNBQVMsU0FBUyxDQUFDLENBQUMsRUFBRTtBQUN0QixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDbEIsUUFBUSxPQUFPLENBQUMsQ0FBQztBQUNqQixLQUFLO0FBQ0wsSUFBSSxJQUFJLElBQUksR0FBRyxDQUFDLENBQUM7QUFDakIsSUFBSSxHQUFHO0FBQ1AsUUFBUSxJQUFJLEVBQUUsQ0FBQztBQUNmLEtBQUssUUFBUSxDQUFDLENBQUMsS0FBSyxFQUFFLElBQUksRUFBRSxFQUFFO0FBQzlCLElBQUksT0FBTyxJQUFJLENBQUM7QUFDaEIsQ0FBQztBQUNEO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxJQUFJLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUNwQixJQUFJLElBQUksT0FBTyxDQUFDLEtBQUssUUFBUTtBQUM3QixRQUFRLENBQUMsR0FBRyxNQUFNLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDdEIsSUFBSSxJQUFJLE9BQU8sQ0FBQyxLQUFLLFFBQVE7QUFDN0IsUUFBUSxDQUFDLEdBQUcsTUFBTSxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ3RCLElBQUksSUFBSSxDQUFDLElBQUksRUFBRSxJQUFJLENBQUMsSUFBSSxFQUFFO0FBQzFCLFFBQVEsTUFBTSxJQUFJLFVBQVUsQ0FBQyxxQkFBcUIsQ0FBQyxDQUFDO0FBQ3BELElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO0FBQ2YsSUFBSSxJQUFJLENBQUMsR0FBRyxFQUFFLENBQUM7QUFDZixJQUFJLElBQUksQ0FBQyxHQUFHLEVBQUUsQ0FBQztBQUNmLElBQUksSUFBSSxDQUFDLEdBQUcsRUFBRSxDQUFDO0FBQ2YsSUFBSSxPQUFPLENBQUMsS0FBSyxFQUFFLEVBQUU7QUFDckIsUUFBUSxNQUFNLENBQUMsR0FBRyxDQUFDLEdBQUcsQ0FBQyxDQUFDO0FBQ3hCLFFBQVEsTUFBTSxDQUFDLEdBQUcsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUN4QixRQUFRLE1BQU0sQ0FBQyxHQUFHLENBQUMsSUFBSSxDQUFDLEdBQUcsQ0FBQyxDQUFDLENBQUM7QUFDOUIsUUFBUSxNQUFNLENBQUMsR0FBRyxDQUFDLElBQUksQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDO0FBQzlCLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLFFBQVEsQ0FBQyxHQUFHLENBQUMsQ0FBQztBQUNkLEtBQUs7QUFDTCxJQUFJLE9BQU87QUFDWCxRQUFRLENBQUMsRUFBRSxDQUFDO0FBQ1osUUFBUSxDQUFDLEVBQUUsQ0FBQztBQUNaLFFBQVEsQ0FBQyxFQUFFLENBQUM7QUFDWixLQUFLLENBQUM7QUFDTixDQUFDO0FBQ0Q7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0E7QUFDQTtBQUNBO0FBQ0EsU0FBUyxHQUFHLENBQUMsQ0FBQyxFQUFFLENBQUMsRUFBRTtBQUNuQixJQUFJLElBQUksSUFBSSxHQUFHLENBQUMsT0FBTyxDQUFDLEtBQUssUUFBUSxJQUFJLE1BQU0sQ0FBQyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUMsR0FBRyxHQUFHLENBQUMsQ0FBQyxDQUFDLENBQUM7QUFDakUsSUFBSSxJQUFJLElBQUksR0FBRyxDQUFDLE9BQU8sQ0FBQyxLQUFLLFFBQVEsSUFBSSxNQUFNLENBQUMsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDLEdBQUcsR0FBRyxDQUFDLENBQUMsQ0FBQyxDQUFDO0FBQ2pFLElBQUksSUFBSSxJQUFJLEtBQUssRUFBRSxFQUFFO0FBQ3JCLFFBQVEsT0FBTyxJQUFJLENBQUM7QUFDcEIsS0FBSztBQUNMLFNBQVMsSUFBSSxJQUFJLEtBQUssRUFBRSxFQUFFO0FBQzFCLFFBQVEsT0FBTyxJQUFJLENBQUM7QUFDcEIsS0FBSztBQUNMLElBQUksSUFBSSxLQUFLLEdBQUcsRUFBRSxDQUFDO0FBQ25CLElBQUksT0FBTyxDQUFDLENBQUMsSUFBSSxHQUFHLElBQUksSUFBSSxFQUFFLE1BQU0sRUFBRSxFQUFFO0FBQ3hDLFFBQVEsSUFBSSxLQUFLLEVBQUUsQ0FBQztBQUNwQixRQUFRLElBQUksS0FBSyxFQUFFLENBQUM7QUFDcEIsUUFBUSxLQUFLLEVBQUUsQ0FBQztBQUNoQixLQUFLO0FBQ0wsSUFBSSxPQUFPLENBQUMsSUFBSSxHQUFHLEVBQUUsTUFBTSxFQUFFO0FBQzdCLFFBQVEsSUFBSSxLQUFLLEVBQUUsQ0FBQztBQUNwQixJQUFJLEdBQUc7QUFDUCxRQUFRLE9BQU8sQ0FBQyxJQUFJLEdBQUcsRUFBRSxNQUFNLEVBQUU7QUFDakMsWUFBWSxJQUFJLEtBQUssRUFBRSxDQUFDO0FBQ3hCLFFBQVEsSUFBSSxJQUFJLEdBQUcsSUFBSSxFQUFFO0FBQ3pCLFlBQVksTUFBTSxDQUFDLEdBQUcsSUFBSSxDQUFDO0FBQzNCLFlBQVksSUFBSSxHQUFHLElBQUksQ0FBQztBQUN4QixZQUFZLElBQUksR0FBRyxDQUFDLENBQUM7QUFDckIsU0FBUztBQUNULFFBQVEsSUFBSSxJQUFJLElBQUksQ0FBQztBQUNyQixLQUFLLFFBQVEsSUFBSSxLQUFLLEVBQUUsRUFBRTtBQUMxQjtBQUNBLElBQUksT0FBTyx
|