2019-04-21 07:50:50 +00:00
|
|
|
# bigint-crypto-utils
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
Utils for working with cryptography using native JS (stage 3) implementation of BigInt. It includes some extra functions
|
|
|
|
to work with modular arithmetics along with secure random numbers and a fast strong probable prime generation/testing
|
|
|
|
(parallelised multi-threaded Miller-Rabin primality test). It can be used by any [Web Browser or webview supporting
|
|
|
|
BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility)
|
|
|
|
and with Node.js (>=10.4.0). In the former case, for multi-threaded primality tests, you should use Node.js 11 or enable
|
|
|
|
at runtime with `node --experimental-worker` with Node.js >=10.5.0.
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
_The operations supported on BigInts are not constant time. BigInt can be therefore **[unsuitable for use in
|
|
|
|
cryptography](https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html).** Many platforms
|
|
|
|
provide native support for cryptography, such as [Web Cryptography API](https://w3c.github.io/webcrypto/) or [Node.js
|
|
|
|
Crypto](https://nodejs.org/dist/latest/docs/api/crypto.html)._
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
## Installation
|
2019-04-21 07:50:50 +00:00
|
|
|
bigint-crypto-utils is distributed for [web browsers and/or webviews supporting
|
|
|
|
BigInt](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt#Browser_compatibility)
|
|
|
|
as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-19 10:04:06 +00:00
|
|
|
bigint-crypto-utils can be imported to your project with `npm`:
|
2019-04-19 07:42:28 +00:00
|
|
|
```bash
|
2019-04-19 10:04:06 +00:00
|
|
|
npm install bigint-crypto-utils
|
2019-04-19 07:42:28 +00:00
|
|
|
```
|
2019-04-20 20:16:58 +00:00
|
|
|
NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
For web browsers, you can also directly download the minimised version of the [IIFE
|
|
|
|
file](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.min.js)
|
|
|
|
or the [ES6
|
|
|
|
module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/dist/bigint-crypto-utils-latest.browser.mod.min.js)
|
|
|
|
from GitHub.
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
## Usage example
|
|
|
|
|
|
|
|
With node js:
|
|
|
|
```javascript
|
2019-04-19 10:04:06 +00:00
|
|
|
const bigintCryptoUtils = require('bigint-crypto-utils');
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:39:28 +00:00
|
|
|
/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
|
2019-04-21 07:50:50 +00:00
|
|
|
or the shorter new no-so-linter-friendly syntax 666n.
|
|
|
|
Notice that you can also pass a number, e.g. BigInt(666), but it is not
|
|
|
|
recommended since values over 2**53 - 1 won't be safe but no warning will
|
|
|
|
be raised.
|
2019-04-21 07:39:28 +00:00
|
|
|
*/
|
2019-04-19 07:42:28 +00:00
|
|
|
let a = BigInt('5');
|
|
|
|
let b = BigInt('2');
|
|
|
|
let n = BigInt('19');
|
|
|
|
|
2019-04-19 10:04:06 +00:00
|
|
|
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-19 10:04:06 +00:00
|
|
|
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-19 10:04:06 +00:00
|
|
|
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
// Generation of a probable prime of 2048 bits
|
2019-04-19 10:04:06 +00:00
|
|
|
const prime = await bigintCryptoUtils.prime(2048);
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
// Testing if a prime is a probable prime (Miller-Rabin)
|
2019-04-19 10:04:06 +00:00
|
|
|
if ( await bigintCryptoUtils.isProbablyPrime(prime) )
|
2019-04-21 07:50:50 +00:00
|
|
|
// code if is prime
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
// Get a cryptographically secure random number between 1 and 2**256 bits.
|
2019-04-21 07:50:50 +00:00
|
|
|
const rnd = bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
From a browser, you can just load the module in a html page as:
|
|
|
|
```html
|
2019-04-21 07:50:50 +00:00
|
|
|
<script type="module">
|
|
|
|
import * as bigintCryptoUtils from 'bigint-utils-latest.browser.mod.min.js';
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
let a = BigInt('5');
|
|
|
|
let b = BigInt('2');
|
|
|
|
let n = BigInt('19');
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
(async function () {
|
|
|
|
// Generation of a probable prime of 2018 bits
|
|
|
|
const p = await bigintCryptoUtils.prime(2048);
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
// Testing if a prime is a probable prime (Miller-Rabin)
|
|
|
|
const isPrime = await bigintCryptoUtils.isProbablyPrime(p);
|
|
|
|
alert(p.toString() + '\nIs prime?\n' + isPrime);
|
2019-04-19 07:42:28 +00:00
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
// Get a cryptographically secure random number between 1 and 2**256 bits.
|
|
|
|
const rnd = await bigintCryptoUtils.randBetween(BigInt(2) ** BigInt(256));
|
|
|
|
alert(rnd);
|
|
|
|
})();
|
|
|
|
</script>
|
2019-04-19 07:42:28 +00:00
|
|
|
```
|
|
|
|
|
2019-04-19 10:04:06 +00:00
|
|
|
# bigint-crypto-utils JS Doc
|
2019-04-19 07:42:28 +00:00
|
|
|
|
|
|
|
{{>main}}
|
|
|
|
|
2019-04-21 07:50:50 +00:00
|
|
|
* * *
|